Skip to main content
Log in

Quantum teleportation in a dissipative environment

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate quantum teleportation of a single-qubit state for the situation in which both qubits of the entangled channel are subjected to local structured reservoirs. We consider the effect of entanglement sudden death (ESD) of the channel on the average fidelity of the teleportation. It is shown the appearance of ESD leads to an abrupt variation of the fidelity of quantum teleportation. In addition, we show the fidelity exhibits oscillations in the non-Markovian reservoir due to the memory effect of the reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. Nielsen M.A., Knill E., Laflamme R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52–55 (1998)

    Article  ADS  Google Scholar 

  4. Furusawa A., Søensen J.L., Braunstein S.L., Fuchs C.A., Kimble H.J., Polzik E.S.: Unconditional quantum teleportation. Science 282, 706–709 (1998)

    Article  ADS  Google Scholar 

  5. Olmschenk S., Matsukevich D.N., Maunz P., Hayes D., Duan L.M., Monroe C.: Quantum teleportation between distant matter qubits. Science 323, 486–489 (2009)

    Article  ADS  Google Scholar 

  6. Horodecki M., Horodecki P., Horodecki R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Banaszek K.: Optimal quantum teleportation with an arbitrary pure state. Phys. Rev. A 62, 024301-1–024301-4 (2000)

    Article  ADS  Google Scholar 

  8. Albeverio S., Fei S.-M., Yang W.-L.: Optimal teleportation based on bell measurements. Phys. Rev. A 66, 012301-1–012301-4 (2002)

    Article  ADS  Google Scholar 

  9. Oh S., Lee S., Lee H.W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66, 022316-1–022316-5 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  10. Verstraete F., Verschelde H.: Fidelity of mixed states of two qubits. Phys. Rev. A 66, 022307-1–022307-5 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  11. Badzia̧ P., Horodecki M., Horodecki P., Horodecki R.: Local environment can enhance fidelity of quantum teleportation. Phys. Rev. A 62, 012311-1–012311-7 (2000)

    ADS  MATH  Google Scholar 

  12. Bandyopadhyay S.: Origin of noisy states whose teleportation fidelity can be enhanced through dissipation. Phys. Rev. A 65, 022302-1–022302-6 (2002)

    ADS  Google Scholar 

  13. Kumar D., Pandey P.N.: Effect of noise on quantum teleportation. Phys. Rev. A 68, 012317-1–012317-6 (2003)

    Article  ADS  Google Scholar 

  14. Jung E. et al.: Greenberger-Horne-Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312-1–012312-11 (2008)

    ADS  Google Scholar 

  15. Yeo Y., Kho Z.W., Wang L.: Effects of Pauli channels and noisy quantum operations on standard teleportation. Europhys. Lett. 86, 40009-p1–40009-p6 (2009)

    Article  Google Scholar 

  16. Bhaktavatsala Rao D.D., Panigrahi P.K., Mitra C.: Teleportation in the presence of common bath decoherence at the transmitting station. Phys. Rev. A 78, 022336-1–022336-5 (2008)

    Article  ADS  Google Scholar 

  17. Hu X. Y., Gu Y., Gong Q.H., Guo G.C.: Noise effect on fidelity of two-qubit teleportation. Phys. Rev. A 81, 054302-1–054302-4 (2010)

    ADS  Google Scholar 

  18. Carlo G.G., Benenti G., Casati G.: Teleportation in a noisy environment: a quantum trajectories approach. Phys. Rev. Lett. 91, 257903-1–257903-4 (2003)

    Article  ADS  Google Scholar 

  19. Hu M.L.: Environment-induced decay of teleportation fidelity of the one-qubit state. Phys. Lett. A 375, 2140–2143 (2011)

    Article  ADS  Google Scholar 

  20. Lee J., Kim M.S.: Entanglement teleportation via Werner states. Phys. Rev. Lett. 84, 4236–4239 (2000)

    Article  ADS  Google Scholar 

  21. Almeida M.P. et al.: Environment-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  22. Xu J.S. et al.: Experimental demonstration of photonic entanglement collapse and revival. Phys. Rev. Lett. 104, 100502-1–100502-4 (2010)

    ADS  Google Scholar 

  23. Laurat J. et al.: Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling. Phys. Rev. Lett. 99, 180504-1–180504-4 (2007)

    Article  ADS  Google Scholar 

  24. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404-1–140404-4 (2004)

    ADS  Google Scholar 

  25. Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140403-1–140403-4 (2006)

    ADS  Google Scholar 

  26. Eberly J.H., Yu T.: The end of an entanglement. Science 316, 555–557 (2007)

    Article  Google Scholar 

  27. Yu T., Eberly J.H.: Sudden death of entanglement. Science 323, 598–601 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Weinstein Y.S.: Tripartite entanglement witnesses and entanglement sudden death. Phys. Rev. A 79, 012318-1–012318-6 (2009)

    ADS  Google Scholar 

  29. Weinstein Y.S.: Entanglement sudden death as an indicator of fidelity in a four-qubit cluster state. Phys. Rev. A 79, 052325-1–052325-8 (2009)

    ADS  Google Scholar 

  30. Weinstein Y.S.: Entanglement sudden death in a quantum memory. Phys. Rev. A 80, 022310-1–022310-6 (2009)

    Article  ADS  Google Scholar 

  31. Weinstein Y.S.: Entanglement evolution in a five qubit error correction code. Quantum Inf. Process. 10, 533–542 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bellomo B., Lo Franco R., Compagno G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502-1–160502-4 (2007)

    Article  ADS  Google Scholar 

  33. Bellomo B., Lo Franco R., Compagno G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342-1–032342-10 (2008)

    Article  ADS  Google Scholar 

  34. Mazzola L., Maniscalco S., Piilo J., Suominen K.A., Garraway B.M.: Sudden death and sudden birth of entanglement in common structured reservoirs. Phys. Rev. A 79, 042302-1–042302-4 (2009)

    Article  ADS  Google Scholar 

  35. Breuer H.-P., Petruccione F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford, New York (2002)

    MATH  Google Scholar 

  36. Maniscalco S., Petruccione F.: Non-Markovian dynamics of a qubit. Phys. Rev. A 73, 012111-1–012111-8 (2006)

    ADS  MathSciNet  Google Scholar 

  37. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  38. Das S., Agarwal G.S.: Protecting bipartite entanglement by quantum interferences. Phys. Rev. A 81, 052341-1–052341-6 (2010)

    Article  ADS  Google Scholar 

  39. Tan J., Kyaw T.H., Yeo Y.: Non-Markovian environments and entanglement preservation. Phys. Rev. A 81, 062119-1–062119-5 (2010)

    Article  ADS  Google Scholar 

  40. Bellomo B., Franco R.L., Maniscalco S., Compagno G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302-1–060302-4 (2008)

    ADS  Google Scholar 

  41. Yamamoto N., Nurdin H.I., James M.R., Petersen I.R.: Avoiding entanglement sudden death via measurement feedback control in a quantum network. Phys. Rev. A 78, 042339-1–042339-11 (2008)

    Article  ADS  Google Scholar 

  42. Yönaç M., Yu T., Eberly J.H.: Pairwise concurrence dynamics: a four-qubit model. J. Phys. B At. Mol. Opt. Phys. 40, S45–S59 (2007)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Xiao Man.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Man, ZX., Xia, YJ. Quantum teleportation in a dissipative environment. Quantum Inf Process 11, 1911–1920 (2012). https://doi.org/10.1007/s11128-011-0350-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0350-y

Keywords

Navigation