Skip to main content
Log in

From orthogonal projections to a generalized quantum search

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A quantum algorithm with certainty is introduced in order to find a marked pre-image of an element which is known to be in the image domain of an orthogonal projection operator. The analysis of our algorithm is made by using properties of the Moebius transformations acting on the complex projective line. This new algorithm closely resembles the quantum amplitude amplification algorithm, however it is proven that our algorithm is a proper generalization of the latter (with generalized phases), in such a way that the quantum search engine of the main operator of quantum amplification is included as a particular case. In order to show that there exist search problems that can be solved by our proposal but cannot be by applying the quantum amplitude amplification algorithm, we modify our algorithm as a cryptographic authentification protocol. This protocol results to be robust enough against attacks based on the quantum amplitude amplification algorithm. As a byproduct, we show a condition where it is impossible to find exactly a pre-image of an orthoghonal projection. This result generalizes the fact that, it is impossible to find a target state exactly by using quantum amplification on a three dimensional invariant subspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Goguen J.A.: A categorical manifesto. Math. Struct. Comput. Sci. 1, 49–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In: Lomonaco, J. S. J., Brandt, H.E. (eds.) Quantum Computation and Quantum Information: A Millennium Volume. AMS Contemporary Mathematics Series, vol. 305, pp. 53–74 (2002)

  3. Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  4. Grover L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)

    Article  ADS  Google Scholar 

  5. Long G.L., Zhang W.L., Li Y.S., Niu L.: Arbitrary phase rotation can not be used in Grover’s quantum search algorithm. Commun. Theor. Phys. 32, 335–338 (1999)

    Google Scholar 

  6. Long G.L., Li X., Sun Y.: Phase matching condition for quantum search with a generalized initial state. Phys. Lett. A 294, 143–152 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Høyer P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052,304 (2000)

    Article  Google Scholar 

  8. Long G.L.: Grover algorithm with zero theoretical failure rate. Phys. Rev. A 64, 022,307 (2001)

    Google Scholar 

  9. Biham E., Biham O., Biron D., Grassl M., Lidar D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742–2745 (1999)

    Article  ADS  Google Scholar 

  10. Carlini A., Hosoya A.: Quantum computers and unstructured search: finding and counting items with an arbitrarily entangled initial state. Phys. Lett. A 280, 114–120 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Jin W.L., Chen X.D.: A desired state can not be found with certainty for Grover’s algorithm in a possible three-dimensional complex subspace. Quantum Inf. Process. 10, 419–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, W.: Quantum search in a possible three-dimensional complex subspace. Quantum Inf. Process. (2011). doi:10.1007/s11128-011-0230-5

  13. Li D.F., Li X.X.: More general quantum search algorithm Q = −I γ VI τ U and the precise formula for the amplitude and the non-symmetric effects of different rotating angles. Phys. Lett. A 287, 304–316 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Long G.L., Yang L.: Search an unsorted database with quantum mechanics. Front. Comput. Sci. China 1(3), 247–271 (2007)

    Article  MathSciNet  Google Scholar 

  15. Ahlfors L.V.: Complex Analysis. 3rd edn. McGraw-Hill, Tokyo (1979)

    MATH  Google Scholar 

  16. Conway J.B.: Functions of One Complex Variable I. 2nd edn. Springer, New York (1995)

    Book  Google Scholar 

  17. Needham T.: Visual Complex Analysis. Oxford University Press, Oxford (2002)

    Google Scholar 

  18. Lee J., Kim C.H., Lee E., Kim J., Lee S.: Qubit geometry and conformal mapping. Quantum Inf. Process. 1(1/2), 129–134 (2002)

    Article  MathSciNet  Google Scholar 

  19. Bautista-Ramos C., Castillo-Tepox N.: Möbius transformations in quantum amplitude amplification with generalized phases. Int. J. Quantum Inf. 8(6), 923–935 (2010)

    Article  MATH  Google Scholar 

  20. Codd E.F.: A relational model of data for large shared data banks. Commun. ACM 13, 377–387 (1970)

    Article  MATH  Google Scholar 

  21. Codd E.F.: The Relational Model for Database Management: Version 2. Addison-Wesley, Reading Mass (1990)

    MATH  Google Scholar 

  22. Abiteboul S., Hull R., Vianu V.: Foundations of Databases. Addison-Wesley, Reading Mass (1995)

    MATH  Google Scholar 

  23. Agoston M.K.: Computer Graphics and Geometrical Modeling. Springer, London (2005)

    Google Scholar 

  24. Hartley R., Zisserman A.: Multiple View Geometry in Computer Vision. Cambrigde University Press, Cambridge (2003)

    Google Scholar 

  25. Xie M.: Fundamentals of Robotics: linking perception to action. World Scientific, Singapore (2003)

    Google Scholar 

  26. Menezes A., van Oorschot P., Vanstone S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1996)

    Book  Google Scholar 

  27. Schwerdtfeger H.: Geometry of Complex Numbers. Dover, New York (1979)

    MATH  Google Scholar 

  28. Schwerdtfeger H.: Moebius transformations and continued fractions. Bull. Amer. Math. Soc. 52, 307–309 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lane R.: The convergence and the values of periodic continued fractions. Bull. Amer. Math. Soc. 51, 246–250 (1945)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Bautista-Ramos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bautista-Ramos, C., Guillén-Galván, C. & Rangel-Huerta, A. From orthogonal projections to a generalized quantum search. Quantum Inf Process 12, 1–20 (2013). https://doi.org/10.1007/s11128-011-0355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0355-6

Keywords

Navigation