Skip to main content
Log in

Generation of atomic momentum cluster and graph states via cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present an experimentally feasible method, based on currently available cavity QED technology, to generate n-partite linear cluster and graph states in external degree of freedom of atoms. The scheme is based on first tagging n two-level atoms with the respective cavity fields in momentum space. Later on an effective Ising interaction between such tagged atoms, realized through consecutive resonant and dispersive interactions of auxiliary atoms with the remanent cavity fields, can generate the desired atomic momenta states. The procedure is completed when the auxiliary atoms after passing through Ramsey zones are detected in either of their internal states. We also briefly explain the generation of weighted graph states in the atomic external degree of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrödinger E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807–812 (1935)

    Article  ADS  Google Scholar 

  2. Translation, Proc. Am. Philos. Soc. 124, 323–338 (1980)

  3. Schrödinger E.: Probability relations between separated systems. Naturwissenschaften 32, 446–452 (1936)

    Google Scholar 

  4. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  5. Bohr N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 48, 696–702 (1935)

    Article  ADS  MATH  Google Scholar 

  6. Bell J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  7. Aspect A., Dalibard J., Roger G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ekert A., Jozsa R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  9. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  10. Galindo A., Martin-Delgado M.A.: Information and computation: classical and quantum aspects. Rev. Mod. Phys. 74, 347–432 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. For an overview, see, R. Islam: Engineering entanglement in cavity quantum electrodynamincal systems, Ph.D. Thesis, LAP Lambert Academic Publishing, AG&Co. KG, Germany (2010)

  12. Khalique A., Saif F.: Engineering entanglement between external degrees of freedom of atoms via Bragg scattering. Phys. Lett. A 314, 37–43 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Dürr S., Nonn T., Rempe G.: Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature (London) 395, 33–37 (1998)

    Article  ADS  Google Scholar 

  14. Islam R., Ikram M., Saif F.: Engineering maximally entangled N-photon NOON field states using atom interferometer based on Bragg regime cavity QED. J. Phys. B 40, 1359–1368 (2007)

    Article  ADS  Google Scholar 

  15. Islam R., Khosa A.H., Saif F.: Generation of Bell, NOON and W states via atom interferometry. J. Phys. B 41, 035505 (2008)

    Article  ADS  Google Scholar 

  16. Khan A.A., Zubairy M.S.: Quantum logic gate operating on atomic scattering by standing wave field in Bragg regime. Fortschr. Phys. 46, 417–422 (1998)

    Article  Google Scholar 

  17. Qamar S., Zhu S.-Y., Zubairy M.S.: Teleportation of an atomic momentum state. Phys. Rev. A 67, 042318 (2003)

    Article  ADS  Google Scholar 

  18. Islam R., Ikram M., Ahmed R., Khosa A.H., Saif F.: Atomic state teleportation: from internal to external degrees of freedom. J. Mod. Opt. 56, 875–880 (2009)

    Article  ADS  MATH  Google Scholar 

  19. Khosa A.H., Ikram M., Zubairy M.S.: Measurement of entangled states via atomic beam deflection in Bragg’s regime. Phys. Rev. A 70, 052312 (2004)

    Article  ADS  Google Scholar 

  20. Khosa A.H., Zubairy M.S.: Quantum-state measurement of two-mode entangled field-state in a high-Q cavity. Phys. Rev. A 72, 42106 (2005)

    Article  ADS  Google Scholar 

  21. Khosa A.H., Zubairy M.S.: Measurement of Wigner function via atomic beam deflection in the Raman-Nath regime. J. Phys. B At. Mol. Opt. Phys. 39, 5079–5089 (2006)

    Article  ADS  Google Scholar 

  22. Hein M., Eisert J., Briegel H.-J.: Multiparty entanglement in graph states. Phys. Rev. A 69, 062311 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  23. Islam R., Khosa A.H., Lee H.-W., Saif F.: Generation of field cluster states through collective operation of cavity QED disentanglement eraser. Eur. Phys. J. D 48, 271–277 (2008)

    Article  ADS  Google Scholar 

  24. Briegel H.-J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  25. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  26. Nielsen M.A.: Cluster-state quantum computation. Rep. Math. Phys. 57, 147–161 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Walther P., Resch K.J., Rudolph T., Schenck E., Weinfurter H., Vedral V., Aspelmeyer M., Zeilinger A.: Experimental one way quantum computing. Nature 434, 169–176 (2005)

    Article  ADS  Google Scholar 

  28. Dür W., Briegel H.-J.: Stability of macroscopic entanglement under decoherence. Phys. Rev. Lett. 92, 180403 (2004)

    Article  Google Scholar 

  29. Scarani V., Acin A., Schenck E., Aspelmeyer M.: Nonlocality of cluster states of qubits. Phys. Rev. A 71, 042325 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  30. Walther P., Aspelmeyer M., Resch K.J., Zeilinger A.: Experimental violation of a cluster state Bell inequality. Phys. Rev. Lett. 95, 020403 (2005)

    Article  ADS  Google Scholar 

  31. Browne D.E., Rudolph T.: Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005)

    Article  ADS  Google Scholar 

  32. Tokunaga, Y. , Yamamoto, T., Koashi, M., Imoto, N.: Simple experimental scheme of preparing a four-photon entangled state for the teleportation-based realization of a linear optical controlled-NOT gate. Phys. Rev. A 71, (R)030301 (2005)

    Google Scholar 

  33. Vallone G., Pomarico E., De Martini F., Mataloni P.: One-way quantum computation with two-photon multiqubit cluster states. Phys. Rev. A 78, 042335 (2008)

    Article  ADS  Google Scholar 

  34. Tokunaga Y., Kuwashiro S., Yamamoto T., Koashi M., Imoto N.: Generation of high-fidelity four-photon cluster state and quantum-domain demonstration of one-way quantum computing. Phys. Rev. Lett. 100, 210501 (2008)

    Article  ADS  Google Scholar 

  35. Gao W.-B., Yao X.-C., Xu P., Lu H., Guhne O., Cabello A., Lu C.-Y., Yang T., Chen Z.-B., Pan J.-W.: Bell inequality tests of four-photon six-qubit graph states. Phys. Rev. A 82, 042334 (2010)

    Article  ADS  Google Scholar 

  36. Cho J., Lee H.W.: Generation of atomic cluster states through the cavity input-output process. Phys. Rev. Lett. 95, 160501 (2005)

    Article  ADS  Google Scholar 

  37. Dong P., Xue Z.Y., Yang M., Cao Z.L.: Generation of cluster states. Phys. Rev. A 73, 033818 (2006)

    Article  ADS  Google Scholar 

  38. Zhang X.L., Gao K.L., Feng M.: Efficient and high-fidelity generation of atomic cluster states with cavity QED and linear optics. Phys. Rev. A 75, 034308 (2007)

    Article  ADS  Google Scholar 

  39. Lee J., Park J., Lee S.M., Lee H.-W., Khosa A.H.: Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields. Phys. Rev. A 77, 032327 (2008)

    Article  ADS  Google Scholar 

  40. Li G., Ke S., Ficek Z.: Generation of pure continuous-variable entangled cluster states of four separate atomic ensembles in a ring cavity. Phys. Rev. A 79, 033827 (2009)

    Article  ADS  Google Scholar 

  41. Gonta D., Radtke T., Fritzsche S.: Generation of two-dimensional cluster states by using high-finesse bimodal cavities. Phys. Rev. A 79, 062319 (2009)

    Article  ADS  Google Scholar 

  42. Ballester D., Cho J., Kim M.S.: Generation of graph-state streams. Phys. Rev. A 83, 010302(R) (2011)

    Article  ADS  Google Scholar 

  43. Barrett S.D., Kok P.: Efficient high-fidelity quantum computation using matter qubits and linear optics. Phys. Rev. A 71, 060310(R) (2005)

    ADS  Google Scholar 

  44. Duan L.M., Raussendorf R.: Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  45. Chen Q., Cheng J., Wang K.L., Du J.: Efficient construction of two-dimensional cluster states with probabilistic quantum gates. Phys. Rev. A 73, 012303 (2006)

    Article  ADS  Google Scholar 

  46. Tanamoto T., Liu Y.X., Fujita S., Hu X., Nori F.: Measurement-based teleportation along quantum spin chains. Phys. Rev. Lett. 97, 230501 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  47. Xue Z.Y., Zhang G., Dong P., Yi Y.M., Cao Z.L.: Quantum controlled phase gate and cluster states generation via two superconducting quantum interference devices in a cavity. Eur. Phys. J. B 52, 333–336 (2006)

    Article  ADS  Google Scholar 

  48. Zhang X.L., Gao K.L., Feng M.: Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED. Phys. Rev. A 74, 024303 (2006)

    Article  ADS  Google Scholar 

  49. Zheng S.B.: Generation of cluster states in ion-trap systems. Phys. Rev. A 73, 065802 (2006)

    Article  ADS  Google Scholar 

  50. Blythe P.J., Varcoe B.T.H.: A cavity-QED scheme for cluster-state quantum computing using crossed atomic beams. New J. Phys. 8, 231 (2006)

    Article  ADS  Google Scholar 

  51. Kiesel N., Schmid C., Weber U., Tóth G., Gühne O., Ursin R., Weinfurter H.: Experimental analysis of a four-qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005)

    Article  ADS  Google Scholar 

  52. Zhang A.-N., Lu C.-Y., Zhou X.-Q., Chen Y.-A., Zhao Z., Yang T., Pan J.-W.: Experimental construction of optical multiqubit cluster states from Bell states. Phys. Rev. A 73, 022330 (2006)

    Article  ADS  Google Scholar 

  53. For a theoretical treatment of Bragg regime cavity QED, see, for example, Cook, R.J., Bernhardt, A.F.: Deflection of atoms by a resonant standing electromagnetic wave. Phys. Rev. A 18, 2533–2537 (1978)

    Google Scholar 

  54. Bernhardt A.F., Shore B.W.: Coherent atomic deflection by resonant standing waves. Phys. Rev. A 23, 1290–1301 (1981)

    Article  ADS  Google Scholar 

  55. Giltner D.M., McGowan R.W., Lee S.A.: Theoretical and experimental study of the Bragg scattering of atoms from a standing light wave. Phys. Rev. A 52, 3966–3972 (1995)

    Article  ADS  Google Scholar 

  56. Dürr S., Rempe G.: Acceptance angle for Bragg reflection of atoms from a standing light wave. Phys. Rev. A 59, 1495–1499 (1999)

    Article  ADS  Google Scholar 

  57. Khan A.A., Zubairy M.S.: Quantum non-demolition measurement of Fock states via atomic scattering in Bragg regime. Phys. Lett. A 254, 301–306 (1999)

    Article  ADS  Google Scholar 

  58. Scully M.O., Zubairy M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  59. Zubairy M.S., Agarwal G.S., Scully M.O.: Quantum disentanglement eraser: a cavity QED implementation. Phys. Rev. A 70, 012316 (2004)

    Article  ADS  Google Scholar 

  60. Rauschenbeutel A., Nogues G., Osnaghi S., Bertet P., Brune M., Raimond J.M., Haroche S.: Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett. 83, 5166–5169 (1999)

    Article  ADS  Google Scholar 

  61. Hein, M., Dür, W., Eisert, J., Raussendorf, R., van den Nest, M., Briegel, H.-J.: Entanglement in graph states and its applications, e-print quant-ph/0602096

  62. Kunze S., Dürr S., Rempe G.: Bragg scattering of slow atoms from a standing light wave. Europhys. Lett. 34, 343–348 (1996)

    Article  ADS  Google Scholar 

  63. Kunze S., Dürr S., Dieckmann K., Elbs M., Ernst U., Hardell A., Wolf S., Rempe G.: Standing wave diffraction with a beam of slow atoms. J. Mod. Opt. 44, 1863–1881 (1997)

    Article  ADS  Google Scholar 

  64. Keller C., Schmiedmayer J., Zeilinger A., Nonn T., Dürr S., Rempe G.: Adiabatic following in standing-wave diffraction of atoms. Appl. Phys. B 69, 303–309 (1999)

    Article  ADS  Google Scholar 

  65. Rauschenbeutel A., Bertet P., Osnaghi S., Nogues G., Brune M., Raimond J.M., Haroche S.: Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment. Phys. Rev. A 64, 050301(R) (2001)

    Article  ADS  Google Scholar 

  66. Dur S., Nonn T., Rempe G.: Origin of quantum-mechanical complementarity probed by a ‘which-way’ experiment in an atom interferometer. Nature 395, 33–37 (1998)

    Article  ADS  Google Scholar 

  67. Fortier K.M., Kim S.Y., Gibbons M.J., Admadi P., Chapman M.S.: Deterministic loading of individual atoms to a high-finesse optical cavity. Phys. Rev. Lett. 98, 233601 (2007)

    Article  ADS  Google Scholar 

  68. Ball P.: Quantum all the way. Nature 453, 22–25 (2008)

    Article  Google Scholar 

  69. Rempe G., Schmidt-Kaler F., Walther H.: Observation of sub-Poissonian photon statistics in a micromaser. Phys. Rev. Lett. 64, 2783–2786 (1990)

    Article  ADS  Google Scholar 

  70. Gerry C.C.: Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state. Phys. Rev. A 54, R2529–2532 (1996)

    Article  ADS  Google Scholar 

  71. Deleglise S., Dotsenko I., Sayrin C., Bernu J., Brune M., Raimond J.-M., Haroche S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    Article  ADS  Google Scholar 

  72. For a recent review, please see, Cronin, A.D., Schmiedmayer, J., Pritchard, D.E.: Optics and interferometry with atoms and molecules. Rev. Mod. Phys. 81, 1051–1129 (2009)

    Google Scholar 

  73. Raimond J.M., Brune M., Haroche S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  74. Kokorowski D.A., Cronin A.D., Roberts T.D., Pritchard D.E.: From single- to multiple-photon decoherence in an atom interferometer. Phys. Rev. Lett. 86, 2191–2195 (2001)

    Article  ADS  Google Scholar 

  75. Uys H., Perreault J.D., Cronin A.D.: Matter-wave decoherence due to a gas environment in an atom interferometer. Phys. Rev. Lett. 95, 150403 (2005)

    Article  ADS  Google Scholar 

  76. Jansen M.A.H.M., Domen K.F.E.M., Beijerinck H.C.W., van Leeuwen K.A.H.: Off-resonance atomic Bragg scattering. Phys. Rev. A 76, 053629 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashfaq H. Khosa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, Ru., Khosa, A.H., Saif, F. et al. Generation of atomic momentum cluster and graph states via cavity QED. Quantum Inf Process 12, 129–148 (2013). https://doi.org/10.1007/s11128-012-0359-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0359-x

Keywords

Navigation