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Abstract

The hitting time is the required minimum time for a Markov chain-based walk (classical or
quantum) to reach a target state in the state space. We investigate the effect of the perturbation
on the hitting time of a quantum walk. We obtain an upper bound for the perturbed quantum
walk hitting time by applying Szegedy’s work and the perturbation bounds with Weyl’s pertur-
bation theorem on classical matrix. Based on the definition of quantum hitting time given in
MNRS algorithm, we further compute the delayed perturbed hitting time (DPHT) and delayed
perturbed quantum hitting time (DPQHT). We show that the upper bound for DPQHT is ac-
tually greater than the difference between the square root of the upper bound for a perturbed
random walk and the square root of the lower bound for a random walk.

1 Introduction

Markov chains and random walks have been useful tools in classical computation. One can use
random walks to obtain the final stationary distribution of a Markov chain to sample from. In such
an application the time the Markov chain takes to converge, i.e., convergence time, is of interest
because shorter convergence time means lower cost in generating a sample. Sampling from station-
ary distributions of Markov chains combined with simulated annealing is the core of many clever
classical approximation algorithms. For instance, approximating the volume of convex bodies [1],
approximating the permanent of a non-negative matrix [2], and the partition function of statistical
physics models such as the Ising model [3] and the Potts model [4]. In addition, one can also use
the random walks to search for the marked state, in which the hitting time is of interest because
hitting time indicates the time it requires to find the marked state.

In comparison to classical random walk, quantum walk provides a quadratic speed-up in hitting
time. Quantum walk has been applied to solving many interesting problems [5], such as search-
ing problems, group commutativity, element distinctness, restricted range associativity, triangle
finding in a graph, and matrix product verification. Perturbations of classical Markov chains are
widely studied with respect to hitting time and stationary distribution. Since a quantum system
is susceptible to the environmental noise, we are interested to know what effect perturbation has
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on currently existing quantum walk based algorithms.

This work is organized as follows. In section 2 we present the deviation effect of perturbation
on the spectral gap of a classical Markov chain. In section 3 we discuss how the hitting time
would be affected because of the perturbation. We explore the upper bounds for the perturbed
hitting time quantumly and the time difference (delayed perturbed hitting time) both quantumly
and classically. Finally in section 4, we make our conclusion.

2 Classical Spectral Gap Perturbation

Given a stochastic symmetric matrix P ∈ C
n×n, we can quantize the Markov chain [6]. P. Wocjan,

D. Nagaj and one of us showed that the implementation of one step of quantum walk [7] can be
achieved efficiently. However, the above settings always are under the assumption of perfect sce-
narios. In real life there are many sources of errors that would perturb the process. Noise might
be propagated along with the input source or they might be introduced during the process. Here
we look solely at the noise that are introduced at the beginning of the process.

The noise can be introduced due to the precision limitation and the noisy environment. For in-
stance, not all numbers have a perfect binary representation and the approximated numbers would
cause perturbation. Suppose our input decoding mechanism can always take the input matrix and
represent it in a symmetric transition matrix Q, where Q can be perfectly represented and this is
the matrix closest to the original matrix P that the system can prepare.

Let E be the noise that is introduced because of system’s precision limitation and the environ-
ment, we can express the transition matrix as

Q = P + E. (1)

Classically, much research [8, 9, 10, 11, 12, 13] has focused on the spectral gaps and stationary
distributions of the matrices with perturbation. In a recent work by Ipsen and Nadler [8] , they
refined the perturbation bounds for eigenvalues of Hermitians. Throughout the rest of the paper,
‖ · ‖ always denotes the l2 norm, unless otherwise specified. Based on their result, we summarized
the following:

Corollary 1. Suppose P and Q ∈ C
n×n are Hermitian symmetric transition matrices with respec-

tive eigenvalues

0 < λn(P ) ≤ . . . ≤ λ1(P ) = 1, 0 < λn(Q) ≤ . . . ≤ λ1(Q) = 1, (2)

and Q = P + E, then
max
1≤i≤n

|λi(P )− λi(Q)| ≤ ‖E‖. (3)

Furthermore, the spectral gap δ of P and the spectral gap ∆ of Q have the following relationship

δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖. (4)
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Proof. Eq. (3) is a direct result from the Weyl’s Perturbation Theorem. The Weyl’s Perturba-
tion Theorem bounds the worst-case absolute error between the ith exact and the ith perturbed
eigenvalues of Hermitian matrices in terms of the l2 norm [10, 11]. And since

1− λ2(P ) = δ, 1− λ2(Q) = ∆, (5)

by eq. (3) we have |δ −∆| ≤ ‖E‖. Therefore, in general we can bound the perturbed spectral gap
∆ as

δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖. (6)

Generally speaking, the global norm of E might be very large when the dimensions n >> 1
[14]. However, in our case because E is the difference between two very close stochastic symmetric
matrices, its global norm would never become large.

3 Hitting Time of Markov Chain Based Walks

For the purpose of being complete, we need to cite several definitions and results used in the MNRS
algorithm [15] in this section. We recommend interested readers to reference [15] for details.

Let P be a reversible and ergodic transition matrix with state space Ω and positive eigenvalues.
Suppose P is column-wise stochastic and |Ω| = n, then let the Markov chain (X1, . . . ,Xn) under
discussion have a finite state space Ω and transition matrix P .

Definition 1. For x ∈ Ω, denote the hitting time for x

HT (P, x) = min{t ≥ 1 : Xt = x}. (7)

HT (P, x) is the expected number of transition matrix P invocations to reach the state x when started
in the initial distribution π.

Definition 2. For an n×n matrix P , P−x denotes the (n−1)× (n−1) matrix of P where the row
and column indexed by x are deleted. For a vector v, v−x is the vector that omits the x-coordinate
of v. Similarly, suppose {M} = {x1, . . . , xm}, then P−{M} denotes the (n −m)× (n −m) matrix
of P where the rows and columns indexed by x1, x2, . . . ,and xm are deleted.

Definition 3. Denote the vector space H = C
|Ω|×|Ω|. For a state |ψ〉 ∈ H, define Πψ = |ψ〉〈ψ| as

the orthogonal projector onto Span(|ψ〉). Let A = Span(|y〉|py〉 : y ∈ Ω) be the vector subspace of
H where

|py〉 =
∑

z∈Ω

√
pzy|z〉. (8)

A is spanned by a set of mutually orthogonal states {|ψi〉 : i = 1, 2 . . . , |Ω|}, then let ΠA =
∑

iΠψi
.

Similarly, A−x = Span{|y〉|py〉 : y ∈ Ω\{x}}.
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Definition 4. The unitary operation W (P ) = (S · (2ΠA− I))2 defined on H is the quantum analog
of P . Similarly, the unitary operation W (P, x) = (S · (2ΠA−x

− I))2 defined on H is the quantum
analog of P−x. S is the swap operation defined by S|y〉|z〉 = |z〉|y〉.

Fact 1. [15, 6] Let x ∈ Ω and |µ〉 = |x〉|px〉. Let U2 = S(2ΠA − I) and U1 = I − 2|µ〉〈µ|. When P
is reversible, then U2

2 =W (P ) and (U2U1)
2 = (S(2ΠA−x

− I))2 =W (P, x).

Proof. Since ΠA =
(

∑|Ω|
y=1,y 6=x |y〉|py〉〈y|〈py|

)

+ |µ〉〈µ|, then we have

U2U1 = S(2ΠA − I)(I − 2|µ〉〈µ|)
= S(2ΠA − 2|µ〉〈µ| − I)

= S(2ΠA−x
− I)

3.1 Classical Hitting Time

By [15], the x-hitting time of P can be expressed as HT (P, x) = π†(I − P−x)
−1u−x, where u is an

all-ones vector. It is known that

π†−x(I − P−x)
−1uz =

√
π−x

†(I − S−x)
−1√π−x (9)

where S−x =
√
Π−xP−x

√
Π−x

−1
with Π−x = diag(πi)i 6=x and

√
π−x is the entry-wise square root

of π−x. Let {vj : j ≤ n − 1} be the set of normalized eigenvectors of S−x where the eigenvalue of
vj is λj = cos θj with 0 ≤ θj < π/2. By reordering the eigenvalues, let us assume that 1 > λ1 ≥
. . . ≥ λn−1 > 0. When

√
π−x =

∑

j νjvj is the decomposition of
√
π−x in the eigenbasis of S−x, the

x-hitting time satisfies:

HT (P, x) =
∑

j

ν2j
1− λj

. (10)

Two simple facts can be observed from above description of classical hitting time.

Fact 2. S−x and P−x are similar, they have the same eigenvalues.

Fact 3. Since the entries of distribution π sum up to 1 , i.e.
∑

i(πi) = 1, then it is obvious that√
π−x

†√π−x =
∑

i(πi)i 6=x ≤ 1. Hence we know that
∑

i
ν2
i
=

∑

i
ν̃2
i
≤ 1.

3.2 Delayed Perturbed Hitting Time

In this subsection, we define the delayed perturbed hitting time and its upper bound as the following.

Lemma 1. For a Markov transition matrix P with state space Ω and limiting distribution π.
Assume |Ω| = n and let |vi〉 be the eigenvector with corresponding eigenvalue λi of P−x. Suppose
the eigenvalues of P−x are ordered such that 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 > 0. The x-hitting time
satisfies

HT (P, x) =
∑

j=1

ν2j
1− λj

(11)
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where
√
π−x =

∑|Ω|−1

j=1
νj |vi〉. When given a perturbed matrix Q where ‖Q − P‖ ≤ ‖E‖ then the

Delayed Perturbed Hitting Time (DPHT(P,Q,x)) is bounded from above by

1

1− λ1 − ‖E‖2
− 1

1− λ1 + γ
(12)

where λ1 − λn−1 = γ.

Proof. Let the eigenvalues of Q−x be λ̃i. By the fact ‖Q − P‖ ≤ ‖E‖ and Weyl’s perturbation
theorem, we know that ‖Q−x − P−x‖ ≤ ‖E‖ and |λi − λ̃i| ≤ ‖E‖. The delayed hitting time due to
perturbation is thus

DPHT (P,Q, x) = HT (Q,x)−HT (P, x)

=
∑

i∈Ω

( ν̃2i
1− λ̃i

− ν2i
1− λi

)

≤
(

∑

i∈Ω

ν̃2i
1− λ1 − ‖E‖

)

−
(

∑

i∈Ω

ν2i
1− λn−1

)

≤ (
1

1− λ1 − ‖E‖ − 1

1− λ1 + γ
), (13)

the last inequality is a result from Fact 3.

3.3 Upper Bound for Perturbed Quantum Hitting Time

Given two Hermitian stochastic matrices, P and Q, we explore the difference between walk oper-
ators, W (P ) and W (Q), with respect to their hitting time. Denote the set of marked elements as
|M |. Based on the result from Corollary 1, we have the following:

Corollary 2. Given two symmetric reversible ergodic transition matrices P and Q ∈ C
n×n, where

Q = P + E, let W (P ) and W (Q) be quantum walks based on P and Q, respectively. Let M be the
set of marked elements in the state space. Denote QHT (P ) as the hitting time of walk W (P ) and
QHT (Q) as the hitting time of walk W (Q). Suppose |M | = ǫN . If the second largest eigenvalues
of P and Q are at most 1− δ and 1−∆, respectively, then in general

QHT (P ) = O
(

√

1

δǫ

)

, QHT (Q) = O
(

√

1

(δ − ‖E‖)ǫ
)

(14)

where δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖.

Proof. Suppose the Markov chain P , Q and matrix E are in the following block structure

P =

(

P1 P2

P3 P4

)

, Q =

(

Q1 Q2

Q3 Q4

)

, E =

(

E1 E2

E3 E4

)

(15)

where we order the elements such that the marked ones come last, i.e., P4, Q4 and E4 ∈ C|M |×|M |.
The corresponding modified Markov chains [6] would be

Q̃ =

(

Q1 0
Q3 I

)

=

(

P1 + E1 0
P3 + E3 I

)

. (16)
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By [6], we have QHT (P ) = O(
√

1

1−‖P1‖
) and QHT (Q) = O(

√

1

1−‖Q1‖
). Since we know

‖P1‖ ≤ 1− δǫ

2
and ‖Q1‖ ≤ 1− ∆ǫ

2
(17)

by [6] and by Cauchy’s interlacing theorem we have ‖E‖ ≥ ‖E1‖ [16, Cor.III.1.5], we then obtain

‖Q1‖ ≤ min

{

‖P1‖+ ‖E‖, 1 − (δ − ‖E‖)ǫ
2

}

(18)

as δ − ‖E‖ ≤ ∆ ≤ δ + ‖E‖. Therefore, the hitting times for P and Q are derived.

From the corollary above, it is clear that the noise increases the the quantum hitting time. By
a simple comparison with the classical hitting time, we have the following fact.

Fact 4. When given a perturbed quantum walk W (Q), where the magnitude of noise is ‖E‖, the
quadratic speed-up gained from the quantum walk will be annihilated when ‖E‖ ≥ Ω(δ(1 − δǫ)).

3.4 Quantum Hitting Time Based on MNRS Algorithm

Let U = U2U1 be a unitary matrix with real entries. Let |µ〉 (see Fact 1) be the marked element
where U1 = I − 2|µ〉〈µ| and U2 is a real unitary matrix with a unique 1-eigenvalue |φ〉. Similar to
the classical case, let |φ〉−µ = |φ〉 − 〈φ|µ〉|µ〉.

The potential eigenvalues for U are then ±1 and conjugate complex numbers (eiαj , e−iαj ). Let
|φ〉−µ be the input state for the phase estimation of U , then |φ〉−µ can be uniquely decomposed in
the eigenbasis of U as

|φ〉−µ = δ0|ω0〉+
∑

j

δj |ω±
j 〉+ δ−1|ω−1〉 (19)

where U |ω0〉 = |ω0〉, U |ω−1〉 = −|ω−1〉 and U |ωj〉 = e±iαj |ωj〉. Let QH be the random variable
which takes the value 1/αj with probability δ2j and the value 1/π with probability δ2−1

.

Definition 5. [15] The quantum |µ〉-hitting time of U2 is the expectation of QH, that is

QHT (U2, |µ〉) = 2
∑

i

δ2j
αj

+
δ2−1

π
. (20)

Hence, in order to compute the quantum hitting time of U2, it is important to compute the
spectral decomposition of U . It is shown in the following theorem.

Theorem 1. [6] Fix an n × n column-wise stochastic matrix P̃ , and let {|λ〉} denote a complete

set of orthonormal eigenvectors of the n×n matrix D with entries Djk =
√

P̃jkP̃kj with eigenvalue

{λ}. Then the eigenvalues of the discrete-time quantum walk U = S(2ΠA − I) corresponding to P̃
are ±1 and λ± i

√
1− λ2 = e±iarccosλ 1.

1Eigenvalues of D̃ are exactly the eigenvalues of P̃−{M} and eigenvalue 1.
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Let the subset M be the set of marked elements that we are searching for. The discrete-time
quantum walk U−{M} = S(2ΠA−{M}

− I) satisfies the above theorem when we modify the original

transition matrix P into P̃ in the following manner:

P̃jk =







1 k ∈M and j = k
0 k ∈M and j 6= k
Pjk k 6∈M

We can view P̃ in block structure as follows:

P =

(

P−{M} P2

P3 P4

)

−→ P̃ =

(

P−{M} 0

P3 I

)

, (21)

then the corresponding discriminant matrix D̃ is

D̃ =

(

P−{M} 0

0 I

)

. (22)

Fact 5. Now let us set M = {x}. Then ±1 and e±iαj are eigenvalues of U−x where λj are the
eigenvalues of P−x. Since λj = cos θj (see sect. 3.1), and by use of theorem 1, we know that
θj = αj .

Furthermore, by Fact 1 we know the unitary W (P, x) = U2
−x. The eigenvectors of U−x remain

the eigenvectors ofW (P, x) but the eigenvalues ofW (P, x) would be e2iαj . Given |φ〉−µ as the input
state, we run phase estimation of W (P, x) and the corresponding quantum hitting time would be

QHT (P, x) = 2

n−1
∑

j=1

δ2j
2αj

=

n−1
∑

j=1

δ2j
θj
, (23)

the term
δ2−1

π
in def. 5 disappears because the corresponding eigenphase becomes 0.

3.5 Delayed Perturbed Quantum Hitting Time

In this subsection, we define the Delayed Perturbed Quantum Hitting Time (DPQHT) and its
upper bound as the following.

Fact 6. [15] When P is an ergodic Markov transition with positive eigenvalues, then the x-quantum
hitting time for the unitary W (P, x) is

QHT (P, x) =

n−1
∑

j=1

ν2j
θj

(24)

Proof. Since the length of the projection of |φ〉−u to the eigenspace corresponding to αj is ν
2
j [15],

then by eq. 23 we have the result as shown in eq. 24.

Lemma 2. Given QHT (P, x) and QHT (Q,x) with ‖P − Q‖ = ‖E‖, then by use of Fact 6, we
have the Delayed Perturbed Quantum Hitting Time DPQHT (P,Q, x) bounded from above by

1
√

1− λ1 − ‖E‖2
− 1

2
√
1− λ1 + γ

.

The eigenvalues of P−x are ordered such that 1 > λ1 ≥ λ2 ≥ . . . ≥ λn−1 > 0 and λ1 − λn−1 = γ.
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Proof. Based on Fact 6, we have

DPQHT (P,Q, x) = QHT (Q,x)−QHT (P, x)

=
∑

i∈Ω

( ν̃2i
θ̃i

− ν2i
θi

)

≤
(

∑

i∈Ω

ν̃2i
cos−1 λ̃1

)

−
(

∑

i∈Ω

ν2i
cos−1 λn−1

)

≤ 1
√

1− λ1 − ‖E‖
− 1

2
√
1− λ1 + γ

. (25)

The last inequality is a simple result from Fact 3 and the fact that 2
√
1− λ > cos−1 λ >

√
1− λ

for all λ ∈ (0, 1).

4 Conclusion

By quantizing a perturbed symmetric stochastic n × n matrix Q with noise E, we find an upper
bound for the perturbed quantum hitting time. We also so show the lower bound for the magnitude
of noise when the quadratic speed-up gained from the quantum walk will be annihilated by the noise.

Furthermore we compute the upper bound for the delayed perturbed quantum hitting time
based on the definition of quantum hitting time. One cannot just directly apply the square root
speed-up from quantum walk to the delayed perturbed hitting time (see eq. 13). If one does so,
one would obtain an upper bound for DPQHT as

1
√

1− λ1 − ‖E‖
− 1√

1− λ1 + γ
. (26)

It would be incorrect. The second term of eq. 26 should the the minimum of
∑

i∈Ω
ν2i

cos−1 λn−1

. But

in eq. 26, the second term was actually the maximum. Thus, it is clear that the upper bound for
DPQHT is actually greater than the difference between the square root of the upper bound for a
perturbed random walk and the square root of the lower bound for a random walk.
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