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Examining the dimensionality of genuine multipartite entanglement
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Entanglement in high-dimensional many-body systems plays an increasingly vital role in the
foundations and applications of quantum physics. In the present paper, we introduce a theoretical
concept which allows to categorize multipartite states by the number of degrees of freedom being
entangled. In this regard, we derive computable and experimentally friendly criteria for arbitrary
multipartite qudit systems that enable to examine in how many degrees of freedom a mixed state
is genuine multipartite entangled.
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I. INTRODUCTION

Ever since its discovery more than seventy years ago, quantum entanglement has been considered as
the central essence of quantum theory, forcing us to rethink our view of reality, locality and causality.
It impressively highlights the non-local-realistic and contextual character of nature and thereby provides
insights into the very foundations of physics. Moreover, during the last two decades, it has become more
and more clear that entanglement can serve as a resource for future information processing technologies,
such as quantum cryptography, dense coding, quantum teleportation and quantum computing. It is even
argued that entanglement plays a role in quantum phase transitions [1], ionization processes [2], high
energy physics [3] and light-harvesting complexes [4].
When it comes to studying quantum phenomena in diverse systems one is regularly confronted with

the problems of how to detect, characterize and quantify entanglement. With the exception of bipartite
qubit systems, these problems are in general extremely hard to solve for systems of arbitrary number of
parties and dimensions, i.e. multipartite qudits.
In the present paper we focus on a finer characterization of genuine multipartite entanglement [5] in

multilevel systems. Genuine multipartite entangled states have been shown to be vital for fundamental
tests of quantum physics [6–8] and find application in measurement-based quantum computing [9] and
quantum secret sharing [10, 11]. Although, this type of entanglement is not bounded on the dimensionality
of the local systems, the use of systems with more than two levels, i.e. qudits, brings with it several
advantages and deeper insights. For instance, it was found that quantum correlations are more robust
against decoherence the more degrees of freedom are entangled [12, 13]. Qudit entanglement also improves
the security of quantum key distribution [14], and allows quantum secret sharing schemes [15], distributed
protocols [16, 17] and error-correcting codes [18] which cannot be realized with qubits. It is also to be
expected that quantum computers that encode more than one qubit of information in each particle will
require less resources and will thus be more efficient [19, 20]. Furthermore, high-dimensional multipartite
entanglement is essential for a complete understanding of quantum theory [21–25].
The aim of this paper is to provide practical and experimentally feasible criteria that allow to examine

the dimensionality of genuine multipartite entanglement. The central problem is the following: Suppose
we have realized a multipartite qudit scenario in the laboratory. How can we verify if a state is genuine
multipartite entangled (GME) and how many degrees of freedom are involved in the entanglement?
For pure states this question is easily answered via the ranks of the reduced density matrices. However,

for mixed states, as they appear in any real experiment, this is a nontrivial problem. Consider e.g. the
mixed state ρc = 1

2 |GHZ3〉 〈GHZ3| + 1
6

∑2
i=0 |iii〉 〈iii|, where |GHZ3〉 = 1√

3
(|000〉+ |111〉+ |222〉) is a

tripartite Greenberger-Horne-Zeilinger (GHZ ) state entangled in three degrees of freedom. This state ρc
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is not truly three-dimensionally entangled since it can be decomposed into ρc =
1
3 (|GHZ1,2〉 〈GHZ1,2|+

|GHZ1,3〉 〈GHZ1,3| + |GHZ2,3〉 〈GHZ2,3|) with |GHZi,j〉 = 1√
2
(|iii〉+ |jjj〉), which are each entangled

in only two local degrees of freedom.

II. DEFINITIONS

Let us first give a precise definition of the dimensionality of multipartite entanglement – a multi-
partite generalization of the Schmidt rank [26–28] complementary to the tensor rank [29] that allows
to characterize multipartite qudit states. This generalization is important as the tensor rank is not

the crucial characteristic that the many-body entangled qudit states in [15–25] have in common. This
is mainly because in the multipartite case there is no simple connection between the tensor rank, k-
separability and multilevel entanglement. For example, the states |W 〉 = 1√

3
(|001〉 + |010〉 + |100〉),

|GHZ3〉 = 1√
3
(|000〉+ |111〉+ |222〉) and

∣
∣
∣Ψbisep.

〉

= |0〉 ⊗ 1√
3
(|00〉+ |11〉+ |22〉) all have tensor rank 3.

However, only |GHZ3〉 is commonly regarded as multilevel-multipartite entangled. Hence, for a finer
categorization of multipartite entanglement it is needed to specify novel characteristic quantities.
For a pure n-partite state |ψ〉 ∈ H = Cd1 ⊗ . . .⊗ Cdn consider the set of all reduced density matrices

{ρA = TrB(|ψ〉 〈ψ|)} regarding all bipartitions γ = {(A|B)}. Evidently, iff the state |ψ〉 is fully sepa-
rable then the rank of all reduced density matrices ρA is 1. On the other hand, the state |ψ〉 contains
entanglement iff there exists a ρA with rank(ρA) > 1. For a fixed bipartition (A|B), the dimension-
ality of entanglement is determined by the Schmidt rank [26–28] which equals rank(ρA). Hence, iff
max{rank(ρA)} = f with f ≥ 2 then the state |ψ〉 contains f -dimensional entanglement. We define
a state to be f -dimensionally genuine multipartite entangled (GME) iff it is at least f -dimensionally
entangled with respect to all bipartitions, that is min{rank(ρA)} = f . This can be extended to mixed
states in a natural way: A mixed state ρ =

∑

i pi |ψi〉 〈ψi| is f -dimensionally entangled iff there exists no
decomposition {pi, |ψi〉} into pure states |ψi〉 of dimensionality fi all obeying fi < f , but a decomposition
into pure states satisfying fi ≤ f for all i. A mixed state ρ =

∑

i pi |ψi〉 〈ψi| is f -dimensionally GME iff
any decomposition {pi, |ψi〉} of ρ contains at least one GME state |ψi〉 of dimensionality f or higher.

III. DIMENSIONALITY CRITERIA

The problem of determining the dimensionality of multipartite entanglement for a given mixed state
ρ is as complex as the separability problem, since it is practically impossible to vary over all pure state
decompositions of ρ. For this reason it is imperative to find computable criteria for the detection of high-
dimensional genuine multipartite entanglement. First steps in this direction have recently been made by
Lim et al. [30] and Li et al. [31]. However, the criterion by Lim et al. is only able to discriminate 2-
dimensional from 3-dimensional genuine multipartite entanglement in tripartite three-level systems. The
criterion by Li et al. applies to arbitrary dimensionality and system size, but its noise resistance is rather
unsatisfactory. Hence, further progress is needed here. Recently, a framework of criteria detecting genuine
multipartite entanglement was introduced in [32–35]. Although it belongs to the strongest criteria for
the detection of GME states without requiring semidefinite programming [36], it does not discriminate
states of different dimensionality. In the present paper, we show how this powerful framework can be
extended for verifying the presence of high-dimensional genuine multipartite entanglement in arbitrary
mixed states.
Consider a density matrix ρ of an n-partite d-level system, i.e. a Hilbert space H =

(
Cd
)⊗n

. For a

twofold copy ρ⊗2 on H⊗2 we define for each bipartition (A|B) of H a permutation operator PA which
permutes the subsystem A with its copy A′, i.e.

H⊗2 = HA ⊗HB ⊗HA′ ⊗HB′

PA−→ HA′ ⊗HB ⊗HA ⊗HB′

For instance, for the bipartition ({1}|{2, . . . , n}) and the vector |k〉⊗n ⊗ |l〉⊗n ∈ H⊗2 the corresponding
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operator P{1} acts like

P{1} |k〉⊗n ⊗ |l〉⊗n
= |l〉 ⊗ |k〉⊗(n−1) ⊗ |k〉 ⊗ |l〉⊗(n−1)

.

Using this abbreviation we introduce the quantity

Q0 =

d−1∑

k 6=l

(

| 〈kn| ρ |ln〉 | −
∑

γ

√

〈k, l| P†
Aρ

⊗2PA |k, l〉
)

(1)

with |kn〉 = |k〉⊗n
and |k, l〉 = |k〉⊗n ⊗ |l〉⊗n

, where the |k〉 , |l〉 are vectors of an orthonormal basis
{|0〉 , . . . , |d− 1〉} of Cd and the sum runs over all bipartitions γ = {(A|B)}. Furthermore, we introduce
the quantities (m ∈ {1, . . . , ⌊n

2 ⌋})

Qm =
1

m








d−2∑

k,l=0

∑

σ







|〈αk|ρ|βl〉|
︸ ︷︷ ︸

Ok,l

α,β

−
∑

δ

√

〈αk| ⊗ 〈βl|P†
δρ

⊗2Pδ|αk〉 ⊗ |βl〉
︸ ︷︷ ︸

Pk,l

α,β








−ND

d−2∑

l=0

∑

α

〈αl|ρ|αl〉
︸ ︷︷ ︸

Dl
α








(2)

wherein |αl〉 ∈ H are product vectors, where m of the n local systems contained in the set α are in the
state |l + 1〉 and remaining ones in |l〉, i.e. |α| = m and

|αl〉 =
⊗

i∈α

|l + 1〉i
⊗

i/∈α

|l〉i , (3)

and the same holds for |βl〉. We have

σ = {(α, β) : |α ∩ β| = m− 1} , (4)

ND = (d− 1)m(n−m− 1) . (5)

The innermost sum depends on (α, β) and runs over[43]

δ =







α if k = l ,

{δ | δ ⊂ α\β} if k < l ,

{δ | δ ⊂ β\α} if k > l ,

(6)

where the complement (overline) is taken with respect to the set {1, . . . , n}. Now, the main result of this
paper is that if any of these functions Qm fulfills

Qm > f − 2 ( where f ∈ {2, . . . , d} ) (7)

for a given density matrix ρ, then this state is at least f -dimensionally genuine multipartite entangled.

IV. PROOF

One standard strategy for detecting entanglement or distinguishing different types of entanglement
is to introduce a quantity Q(ρ) and to maximize it over all states of a specific type (e.g. k-separable
states, states with particular Schmidt-rank, states of an entanglement class, etc.). Consequently, if for
a particular state ρ this maximum is exceeded, it necessarily must be of a different kind. The main
problem in deriving entanglement criteria in this way is the involved maximization. The complexity of
this problem can be reduced by using quantities Q(ρ) which are convex in ρ, because in this case the
optimization has to be performed over all pure states only. Nevertheless, the difficulty of finding the
global maximum remains.
In the present paper, a completely new approach is used. Namely, the convex quantities Qm are

constructed by incorporating the matrix elements of specific f -dimensionally GME states. This is done
in a way such that by construction any other state of same or lower dimensionality cannot reach a certain
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bound. Thus, to prove that Qm ≤ f − 1 holds for all states which are entangled in equal or less than f
degrees, no maximization has to be carried out.
First, consider the f -dimensionally genuine n-partite entangled GHZ state

|GHZf 〉 =
1√
f

f−1
∑

i=0

|i〉⊗n
. (8)

In density matrix form ρfGHZ = |GHZf 〉 〈GHZf |, the only nonzero elements are 〈k|⊗n
ρfGHZ |l〉⊗n

= 1
f .

Each term | 〈kn| ρ |ln〉 | in (1) singles out the absolute value of an off-diagonal element of ρfGHZ , such
that

∑

k 6=l

| 〈kn| ρfGHZ |ln〉 | = 2

(
f

2

)
1

f
= f − 1 . (9)

As can easily be confirmed, all terms
√

〈k, l| P†
Aρ

⊗2
fGHZPA |k, l〉 vanish for any choice of k, l and any

bipartition (A|B) as the corresponding matrix elements are all zero. Thus, we have shown that Q0 = f−1
for ρfGHZ . In addition, it was proven in [32] that

| 〈kn| ρ |ln〉 | −
∑

γ

√

〈k, l| P†
Aρ

⊗2PA |k, l〉 ≤ 0 , (10)

holds for all biseparable states. Hence, each of these terms (10) can only be larger than zero if the state
ρ is genuine multipartite entangled in |k〉 and |l〉. Now, since in (1) the absolute values of all off-diagonal
elements of ρfGHZ are added up, and since all terms which are subtracted from this sum are zero for
ρfGHZ , it follows that |GHZf〉 is the only f -dimensionally GME pure state that reaches Q0 = f − 1.
Thus, any state that exceeds f − 1 must at least be (f + 1)-dimensionally GME, which proves (7) for
m = 0.
Due to the way it is constructed, the function (1) is optimally suited to detect high-dimensional genuine

multipartite entanglement in mixed states which are close to GHZ states. To show that the quantities
Qm serve their purpose (7) for m > 0, we introduce the f -dimensionally genuine multipartite entangled
m-Dicke state (m ∈ {1, . . . , ⌊n

2 ⌋})

|Dm
f 〉 := 1

√

(f − 1)
(
n
m

)

f−2
∑

l=0

∑

α

⊗

i∈α

|l + 1〉i
⊗

i/∈α

|l〉i , (11)

where the inner sum runs over all α with |α| = m (see also [33]). Note that this includes a generalization
|Wf 〉 = |D1

f 〉 of the prominent W state for qudits[44]. First, observe that for any fixed choice of k = l in

Qm, (2) reduces to the inequalities from Refs. [32, 33], i.e. in this case it is proven that Qm ≤ 0 holds
for all biseparable states. On the other hand, by summing over all k and l in Qm we add up the absolute

value of specific off-diagonal elements Ok,l
α,β of the m-Dicke state |Dm

f 〉. From these off-diagonal elements

(determined by the proper set σ) there are corresponding diagonal elements (labeled P
k,l
α,β) subtracted,

which correspond to biseparable states having the same off-diagonal elements. For a subset of all those
off-diagonal elements this suffices (as with the inequality based on Q0), however, for some there are no
corresponding diagonal elements belonging to a biseparable state. In order to guarantee that Qm ≤ 0 for
all biseparable states one also needs to subtract the corresponding diagonal elements of the Dicke state

(labeled Dl
α). Counting the cardinality of this subset is a purely combinatorial problem (similar to [33])

resulting in the factor ND. By construction, this guarantees for fixed dimensionality, the maximal value
of Qm for the corresponding Dicke state, as in this case the sum of the off-diagonal elements is maximal,

whereas all P k,l
α,β are zero. By scaling this maximum with the constant 1

m we can unify all quantities Qm

in one consistent framework, i.e. the only f -dimensionally GME pure state that can attain Qm = f − 1
is |Dm

f 〉.
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FIG. 1: (Color online) The noise resistance for the states |GHZd〉 and |Wd〉. The scale indicates up to which
value of white noise a state is detected to be f -dimensionally genuine multipartite entangled (GME). a) up to
the illustrated thresholds for p, the state ρ = p

dn
1+ (1− p) |GHZd〉 〈GHZd| is detected to be GME, i.e. Q0 > 0.

b) for noise p below the illustrated thresholds the state ρ is detected by Q0 > d − 2 to be truly d-dimensionally
GME. c) and d) illustrate these thresholds for the state ρ = p

dn
1+ (1− p) |Wd〉 〈Wd| using Q1(ρ) > f − 2.

V. DETECTION STRENGTH

The introduced criteria allow to examine the dimensionality of multipartite entanglement in a noisy
environment. Fig. 1 shows the robustness for the states |GHZd〉 and |Wd〉 in the presence of white noise.
We compared the illustrated thresholds with the thresholds of entanglement witnesses that follow from
the fidelity of a state (see [27, 31]), i.e. a state is d-dimensionally GME if 〈GHZd| ρ |GHZd〉 > d−1

d

or 〈Wd| ρ |Wd〉 > n(d−1)−1
n(d−1) , respectively. Here, we found that our criteria are strictly stronger for all

d > 2 and n > 2 – specifically, they outperform the noise robustness of previously known criteria [31] for
GHZ -like states. E.g., the tripartite state

ρ = (1− p) |GHZ3〉 〈GHZ3|+ p
1

27
1 , (12)

is detected to be 3-dimensionally GME by Q0 > 1 for 0 ≤ p < 0.375, whereas 〈GHZ3| ρ |GHZ3〉 > 2
3

merely detects the range 0 ≤ p < 0.346. For

ρ = (1− p) |W3〉 〈W3|+ p
1

27
1 , (13)

the difference is even more significant: Using Q1 > 1, we detect the range 0 ≤ p < 0.265 in comparison
to 0 ≤ p < 0.173 following from 〈W3| ρ |W3〉 > 5

6 . A further example of the detection strength is given
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FIG. 2: Illustration of the detection strength of Q0, Q1 > f − 2 for the tripartite four-level state ρ =
α |GHZ4〉 〈GHZ4| + β |W4〉 〈W4| +

1−α−β

64
1. The dark gray region is detected to be 4-dimensionally GME (In

comparison, fidelity-based criteria merely detect the white meshed part of this region to be 4-dimensionally GME).
The middle gray region is detected to be at least 3-dimensionally GME, and the light gray region is detected to
be at least 2-dimensionally GME.

in Fig. 2. As can be seen therein, the region of states detected by our criteria is considerably larger
than the region revealed by fidelity-based witnesses. Finally, let us stress that the quantities Qm are by
construction optimally suited to detect f -dimensional GME states which are close to GHZ, W and Dicke

states. If instead an unclassified input state is given one can improve the detection by maximizing the
outcome of Qm over local-unitary transformations. An appropriate optimization scheme can be found in
[38–40].

VI. CONCLUSION

Creating high-dimensional multipartite entangled states is one of the current challenges in experiments
on quantum physics. In the present paper, we gave a precise mathematical characterization of such
states and provided criteria for the dimensionality of genuine multipartite entanglement applicable to
arbitrary multi-qudit systems. These criteria are easily computable since they do not rely on semidefinite
programming or eigenvalue computations, but only on functions of density matrix elements. They are
also advantageous in experiments, as they are rather robust against noise and to apply them it is not
necessary to determine the entire density matrix of the system under consideration. In detail, due to the
fact that the quantities Qm only involve the matrix elements of GHZ, W and Dicke states, it is merely
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needed to determine these few entries of the density matrix, which can always be achieved via local
measurements and corresponding correlations (see also the discussion in e.g. [32–35]). Consequently,
they can be experimentally implemented with a reduced number of local observables, since the number of
measurements for a full quantum state tomography scales exponentially in the number of parties n, i.e.
is of the order O(d2n) [41], whereas the number of density matrix elements that occur in Qm is only of
the order O(d2

(
n
m

)
), that is polynomial in n (Note that the notation in terms of two-fold copies of a state

is only a matter of compactness, i.e. in experiments it is not necessarily needed to have two copies at a
time). Finally, it is noteworthy that our results are even promising to be closely related to measures of
genuine multipartite entanglement, as e.g. for multipartite qubits the quantity Q0 yields a strong lower
bound on the gme-concurrence [42].
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