Skip to main content
Log in

Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a scheme for N-photon Greenberger–Horne–Zeilinger (GHZ) state analysis using hyperentangled states in multiple degrees of freedom with only linear optics and single photon detectors is proposed. The photons are separated and processed in different processing units. All the eight GHZ-states in either the polarization or the momentum degree of freedom can be completely distinguished. The scheme is implementable using present-day technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielson M.A., Chuang I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bouwmeester D., Pan J., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature (London) 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Boschi D., Branca S., De Martini F., Hardy L., Popescu S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Jennewein T., Weihs G., Pan J.-W., Zeilinger A.: Experimental nonlocality proof of quantum teleportation and entanglement swapping. Phys. Rev. Lett. 88, 017903 (2002)

    Article  ADS  Google Scholar 

  6. de Riedmatten H., Marcikic I., van Houwelingen J.A.W., Tittel W., Zbinden H., Gisin N.: Long-distance entanglement swapping with photons from separated sources. Phys. Rev. A 71, 0500302 (2005)

    Google Scholar 

  7. Goebel A.M., Wagenknecht C., Zhang Q., Chen Y.-A., Chen K., Schmiedmayer J., Pan J.-W.: Multistage entanglement swapping. Phys. Rev. Lett. 101, 080403 (2008)

    Article  ADS  Google Scholar 

  8. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Mattle K., Weinfurter H., Kwiat P.G., Zeilinger A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  10. Shimizu K., Imoto N., Mukai T.: Dense coding in photonic quantum communication with enhanced information capacity. Phys. Rev. A 59, 1092–1097 (1999)

    Article  ADS  Google Scholar 

  11. Liu X.S., Long G.L., Tong D.M., Li F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  12. Bennett C.H., Brassard G., Mermin N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Ekert A.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Liu X.S., Long G.L.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  15. Deng F.G., Long G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  16. Karlsson A., Bourennane M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A 58, 4394–4400 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  17. Jung E., Hwang M.-R., Ju You H., Kim M.-S., Yoo S.-K., Kim H., Park D., Son J.-W., Tamaryan S., Cha S.-K.: Greenberger–Horne–Zeilinger versus W states: quantum teleportation through noisy channels. Phys. Rev. A 78, 012312 (2008)

    Article  ADS  Google Scholar 

  18. Lu C.-Y., Yang T., Pan J.-W.: Experimental multiparticle entanglement swapping for quantum networking. Phys. Rev. Lett. 103, 020501 (2009)

    Article  ADS  Google Scholar 

  19. Greenberger D.M., Horne M.A., Zeilinger A.: . In: Kafatos, M. (eds) Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, Kluwer, Dordrecht (1989)

  20. Greenberger D.M., Horne M.A., Shimony A., Zeilinger A.: Bells theorem without inequalities. Am. J. Phys. 58, 1131–1143 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  21. Wang C., Deng F.G., Li Y.S. et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  22. Vaindman L., Yoran N.: Methods for reliable teleportation. Phys. Rev. A 59, 116–125 (1999)

    Article  ADS  Google Scholar 

  23. Lütkenhaus N., Calsamiglia J., Suominen K.-A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295–3300 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  24. Calsamiglia J., Lkenhaus N.: Maximum efficiency of a linear-optical Bell-state analyzer. Appl. Phys. B: Lasers Opt. 72, 67–71 (2000)

    Article  ADS  Google Scholar 

  25. Calsamiglia J.: Generalized measurements by linear elements. Phys. Rev. A 65, 030301 (R) (2002)

    Article  ADS  Google Scholar 

  26. van Houwelingen J.A.W., Brunner N., Beveratos A., Zbinden H., Gisin N.: Quantum teleportation with a three-Bell-state analyzer. Phys. Rev. Lett. 96, 130502 (2006)

    Article  MathSciNet  Google Scholar 

  27. Ursin R., Jennewein T., Aspelmeyer M., Kaltenbaek R., Lindenthal M., Walther P., Zeilinger A.: Communications: quantum teleportation across the Danube. Nature (London) 430, 849 (2004)

    Article  ADS  Google Scholar 

  28. Kwiat P.G., Weinfurter H.: Embedded Bell-state analysis. Phys. Rev. A 58, R2623–R2626 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  29. Walborn S.P., Pádua S., Monken C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  30. Walborn S.P., Nogueira W.A.T., Pdua S., Monken C.H.: Optical Bell-state analysis in the coincidence basis. Europhys. Lett. 62, 161 (2003)

    Article  ADS  Google Scholar 

  31. Ren X.-F., Guo G.-P., Guo G.-C.: Complete Bell-states analysis using hyper-entanglement. Phys. Lett. A 343, 8–11 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Barreiro J.T., Langford N.K., Peters N.A., Kwiat P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  33. Sheng Y.B., Deng F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  34. Sheng Y.B., Deng F.G., Long G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)

    Article  ADS  Google Scholar 

  35. Wang C., Sheng Y.B., Deng F.G., Zhang W., Long G.L.: Efficient entanglement purification for doubly entangled photon state. Sci. China Ser. E-Tech. Sci. 52, 3464–3467 (2009)

    Article  MATH  Google Scholar 

  36. Schuck C., Huber G., Kurtsiefer C., Weinfurter H.: Complete deterministic linear optics bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  37. Barbieri M., Vallone G., Mataloni P., De Martini F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)

    Article  ADS  Google Scholar 

  38. Barreiro J.T., Wei Tzu-Chieh., Kwiat P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  39. Pan J.-W., Zeilinger A.: Greenberger–Horne–Zeilinger-state analyzer. Phys. Rev. A 57, 2208–2211 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  40. Qian J., Feng X.-L., Gong S.-Q.: Universal Greenberger–Horne–Zeilinger-state analyzer based on two-photon polarization parity detection. Phys. Rev. A 72, 052308 (2005)

    Article  ADS  Google Scholar 

  41. Walborn S.P., Pádua S., Monken C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Lu Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Cao, Y., Sheng, YB. et al. Complete Greenberger–Horne–Zeilinger state analyzer using hyperentanglement. Quantum Inf Process 12, 381–393 (2013). https://doi.org/10.1007/s11128-012-0375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0375-x

Keywords

Navigation