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Abstract

The operations of data set, such as intersection, union and complement, are the fundamen-

tal calculation in mathematics. It’s very significant that designing fast algorithm for set opera-

tion. In this paper, the quantum algorithm for intersection is presented. And its running time is

O
(√

|A| × |B| × |C|
)

for set operation C = A∩B, while classical computation needs O (|A| × |B|)

steps of computation in general, where |.| denotes the size of set. The presented algorithm is the

combination of Grover’s algorithm, classical memory and classical iterative computation, and the

combination method decrease the complexity of designing quantum algorithm.The method can be

used to design other set operations also.
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I. INTRODUCTION

The operations of data set, such as intersection operation and union operation, are funda-

mental calculation in mathematics. The fast computation of set operation is very important

because it’s the base of many sciences and techniques, such as database, image processing,

signal processing. E.g, database search is based on set operation and the fast computation

of set operation is very important for it.

The computation procedure of set operation on electronic computer is illustrated as below.

Suppose there are two vector sets A and B,

A = {(1, 1, 1, 1, ) , (2, 2, 2, 2) , (1, 2, 3, 4)} ,
B = {(3, 3, 3, 3) , (4, 4, 4, 4) , (1, 2, 3, 4)} ,
and the intersection set C = A ∩B = {(1, 2, 3, 4)}.
Firstly, all vectors of set A (or B) are stored in electronic memory and each vector seems

to be a record of database. The computation procedure of set operation A ∩ B is that,

for every vector in set A, computer fully searches all elements in set B and matches it.

Because sorting multi-dimensional vectors is no useful for the speedup of search in general,

all vectors of set are unsorted. Thus, the method of full search becomes the necessary choice

to calculate intersection set for electronic computer, which is low efficient when set has huge

size.

In addition, the running speed of I/O (Input/Output) equipment of classical computer

is the efficiency bottleneck in term of arbitrary classical algorithm [1]. It’s the computation

procedure of classical computer that loading data into registers one by one via I/O, then

executing calculation instructors one by one [1]. If a set has huge amount of elements, the

process of loading data will waste the time heavily and it’s an efficiency bottleneck. E.g.,

server computer for the database search is more expensive than personal computer, and one

important reason is that advanced I/O is used. If the size of set is huge, set operation faces

the bottleneck, and there is no way to overcome it on classical computation principle.

Therefore, for the sets with huge size, electronic computer can do nothing for the require-

ment of fast computation. We need new computation principle and new algorithm for set

operation.

Fortunately, in the last decade, quantum computation is studied and many surprising

computation properties are revealed so that the research of quantum computation becomes
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the one of hottest research topic currently. One of milestone of quantum computation

researcher is Shor’s algorithm for factoring an integer number with polynomial computation

steps, which is believed to be classically impossible [2]. And Grover presented another

exciting algorithm for database search in 1996. Only O(
√
N) steps of computation are

cost by Grover’s algorithm to find a marked element in an unsorted database with size N ,

while O(N) steps are needed for classical computer [3]. The possible speedup of quantum

computation is essentially enabled by the feature of quantum parallelism. This parallelism

computation of quantum computer bases on the superposition property of states, which is not

possible on electronic computers [4]. It’s the computation procedure of quantum computer

that data is loaded into the superposition of states, the superposition is operated by special

unitary operation, the amplitude of solution is increased, and solution is measured out with

big probability at last. The simple quantum computers have already been constructed. For

example, Shor’s algorithm has been demonstrated by NMR quantum computer [5] and by

optical quantum computer [6] to factorize the number 15.

As well known, the elements of set are arbitrary data (or random data), the size of set is

very big possibly, and all data are stored in electronic memory unorderly and temporarily.

If we want to study the question that how to use quantum computation to perform set

operation, there are three works must be considered at least. The first work is that how to

express the information of a set using quantum state. The second work is that how to load

the information of a set into quantum state from electronic memory. The matching function

between two elements fc is a computation, such as judging if two vector is equal. And the

third work is that how to embed the computation fc into quantum search algorithm.

For the first work (i.e., how to express the set information using state), there are two

expression methods currently. One of method is proposed by Latorre that the informa-

tion of classical data is encoded in the amplitude of a state. Latorre used his method to

expression image data and detail information is lost [7]. Latorre’s method is useful for

image compression, but it’s not suitable to express the information of general set because

distortion of information is not permitted in set operation. The other quantum expres-

sion is proposed by Pang that all elements are regarded as sequence of database record

{record0,record1,...,recordN−1} and the entangled state 1√
N

(
N−1∑

i=0

|i〉register1|recordi〉register2
)

is used to express the information of set [8, 9, 10, 11, 12, 13, 14]. Two registers are entangled

in Pang’s method, and it is no distortion theoretically. In addition, the operation of set is
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equivalent to operating the entangled state.

For the second work (i.e., how to load the set information into state from electronic

memory), the conception of Quantum Loading Scheme (QLS) should be introduced. QLS

is the unitary operation that loading all information of data set into quantum state from

electronic memory. Nielsen and Chuang point out briefly that future quantum computer

should have QLS [4, Section 6.5]. Vittorio Giovannetti, Seth Lloyd and et.al., present a

simple QLS instance with few qubits [15]. Pang presents a QLS instance using the path

interference of molecule [11]. Pang’s study shows that, for a vector −→a = {a1, a1, ..., aN−1},
there is a unitary operation UQLS [11] such that

UQLS : |0〉register1|0〉register2|ancilla〉register3 −→
1√
N

(
N−1∑

i=0

|i〉register1|ai〉register2
)

|ancilla〉register3

, where classical data a1,a1,...aN−1 are used as control signals to flip the particles.

Fig.1 is the illustration of QLS.

The study of Seth Lloyd’s group and Pang’s study show also that QLS is fast and has

running time O (log2N), while classical loading scheme via I/O has running time O (N) that

is the efficiency bottleneck in term of arbitrary classical algorithm. Pang also present a

variant QLS named unitary operation UL as below[11]

UL : 1√
N

(
N−1∑

i=0

|i〉register1|0〉register2
)

|ancilla〉 −→

1√
N

(
N−1∑

i=0

|i〉register1|ai〉register2
)

|ancilla〉

The function of operation UL is that loading data from electronic memory into two

entangled registers according indices of data.

In sum, Nielsen and Chuang points out that QLS has to be existed, and the study of

Seth Lloyd’s group and Pang’s study both demonstrate the existence of QLS.

For the third work (i.e., how to embed other computation into quantum search algorithm),

the conception of the general Grover iteration should be introduced. Additional computation

always goes with the search of database in general. E.g., suppose there is a database to save

the student scores of many subjects. And if we want to find the student who has maximum

average score, the additional computation fc that calculating average score is also needed.

Famous Grover’s algorithm can find a database record according to the given index, and it
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FIG. 1: The Illustration of Quantum Loading Scheme (QLS): The function of QLS is to load all

information of vector −→a = {a1, a1, ..., aN−1} into the superposition of states of quantum CPU from

electronic memory efficiently. In QLS, classical data a1, a1, ..., aN−1 are used as control signals to

flip the particles. QLS has time complexity O(log2N) and the I/O efficiency bottleneck of classical

computer is broken by it.

the base of many quantum search algorithms. However, Grover’s algorithm is invalid for

this kind of search, we need to improve Grover’s algorithm. Pang presents a general Grover

iteration for the search case with additional computation [8, 9, 10, 11, 12, 13, 14], which is

derived from the study of quantum image compression [8, 9, 10, 11, 12, 13, 14].

The Grover iteration is defined as [3, 4]

G = (2|ξ〉〈ξ| − I)Of (1)

, where Of is the oracle that flips the phase of state in Grover iteration, and |ξ〉 = 1√
N
(
N−1∑

i=0

|i〉).
The General Grover Iteration (GGI) Ggeneral [8, 9, 10, 11, 12, 13, 14] is defined as

Ggeneral = (2|ξ〉〈ξ| − I) (UL)
† (Oc)

†OfOcUL

, where Oc denotes the other computation oracle for additional function fc.
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Fig.2 illustrates the general Grover iteration.
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Fig.A :The Decomposition 
of General Grover Iteration
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φ

Fig.B: Equivalent  Grover 
Iteration Logically

The function of Fig.A is 
equivalent to Fig.B, but other 
computation Oc is embedded.

FIG. 2: The Illustration of General Grover Iteration

Similar to Grover iteration, Ggeneral act on initial state |ξ〉 =

1√
N

(
N−1∑

i=0

|i〉register1|0〉register2
)

O
(√

N
)

times and the solution will be found if the

solution is unique [8, 9, 10, 11, 12, 13, 14].

Grover’s algorithm is very useful, and many improved algorithms and many properties

are studied by many experts [16, 17, 18, 19, 20]. Boyer, Brassard, Hoyer, and Tap present

an improved algorithm named BBHT algorithm in this paper.

Suppose there are sequence of data T [i] (0 ≤ i < N). The various steps of the BBHT

[16] are:

Step1. Initialize Γ = 1 and λ = 6/5 (Any value of λ strictly between 1 and 4/3 would

do.)

Step2. Choose j uniformly at random among the nonnegative integers not bigger than

Γ.

Step3. Apply j iterations of Grover’s algorithm starting from the state |Ψ0〉 = 1√
N

N−1∑

i=0

|i〉.
Step4. Observe register: let i0 be the outcome.

Step5. If T [i0] = x, the problem is solved, where T [i] is the sequence of data. And exit.

Step6. Otherwise, set Γ to min{λΓ,
√
N} and go to step 2.

The above BBHT algorithm is used to solve the case that the number of solutions t is

unknown. BBHT algorithm requires that 1 ≤ t ≤ 3
4
N . If t > 3

4
N , we can applied classical
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full search method to got parts of solution efficiently, and call BBHT algorithm again. The

case of no solution is handled by BBHT algorithm also.

BBHT algorithm has time complexity O
(√

N
t

)

. And the probability of finding a solution

is bigger than 1
2
(i.e., after repeating BBHT twice or more, a solution will be found with

probability 100% approximately).

BBHT algorithm is the combination between quantum algorithm and classical iteration.

And the benefit of this combination lies on many circuit are saved, while pure quantum

algorithm will cost exponential numbers of circuit when the number of solution is unknown.

BBHT algorithm will be used in this paper [4].

II. THE QUANTUM ALGORITHM FOR INTERSECTION OPERATION

A. Unitary Operation and Data Structure

Without losing generality, suppose that set is comprised by many vectors (or records) and

let A = {−→a0 ,−→a1 ...−−→aN−1}, where N = 2n (otherwise, add special vector such that N = 2n).

As the same, we have set B =
{−→
b0 ,
−→
b1 ...
−−−→
bM−1

}

, M = 2m.

The match function between two vectors is defines as

fc

(−→ai ,
−→
bj

)

=







1 if −→ai =
−→
bj

0 otherwise

The model of intersection operation C = A∩B is to find two records −→ai0 and
−→
bj0 such that

−→ai0 =
−→
bj0 (i.e., fc(

−→ai ,
−→
bj ) = 1). we have the following data structure and unitary operation

for this model.

DS1. Save set A in electronic memory as a database, and each vector −→ai is a record with

unique index i. As the same, save set B, and each vector
−→
bj has index j.

DS2. Construct five registers that have format

|i〉register1|j〉register2|−→ai 〉register3|
−→
bj 〉register4|fc(−→ai ,

−→
bj )〉register5

That is, the 1st, 2nd, 3rd, 4th, 5th register is used respectively to save index i, index j,

vector −→ai , vector
−→
bj and the value of match function fc.

DS3. Initialize the five registers as zero value:
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|0〉register1|0〉register2|0〉register3|0〉register4|0〉register5

DS4. Construct Hadamard transform:

H : |0〉|0〉|0〉|0〉|0〉 −→ 1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|0〉|0〉|0〉
)

,where each ket denotes a register, not a single qubit.

DS5. Construct Quantum Loading Scheme :

UL :
1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|0〉|0〉|0〉
)

−→ 1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|−→ai 〉|
−→
bj 〉|0〉

)

(2)

The function of UL is to load data into entangled state from electronic memory according

to index.

DS6. Design oracle Oc to compute the value of match function fc:

Oc :
1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|−→ai 〉|
−→
bj 〉|0〉

)

−→ 1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|−→ai 〉|
−→
bj 〉|fc

(−→ai ,
−→
bj

)

〉
)

,where

fc

(−→ai ,
−→
bj

)

=







1 if −→ai =
−→
bj

0 otherwise

DS7. Design oracle Of :

Of : 1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|−→ai 〉|
−→
bj 〉|fc

(−→ai ,
−→
bj

)

〉register5
)

−→

1√
MN

(
N−1∑

i=0

M−1∑

j=0

(−1)f(register5) |i〉|j〉
︸ ︷︷ ︸

|−→ai 〉|
−→
bj 〉|fc

(−→ai ,
−→
bj

)

〉register5
)

The above oracle Of is the oracle in Grover’s algorithm [3, 4], which flips the phase of

state.

DS8. Construct General Grover Iteration Ggeneral:

Ggeneral = (2|ξ〉〈ξ| − I) (UL)
† (Oc)

†OfOcUL (3)

The function of operation Ggeneral is equivalent to the Grover iteration (see Fig.2).
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If set C has unique element (i.e., |C| = 1), Ggeneral acting on

|Ψ0〉 = 1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|0〉|0〉|0〉
)

O
(√

MN
)

times will generate intersection set. How-

ever, the case |C| > 1 often happens, where |·|denotes the size of set. Therefore, we must

design other improved algorithm to compute all elements of set C = A ∩ B.

B. Subroutine 1: Find An Element in Set C = A ∩B

Step1. Initial Γ = 1, λ = 6
5
.

Step2. Choose k uniformly at random among the nonnegative integers not bigger than

Γ.

Step3. Apply k times of general Grover iteration Ggeneral starting from the state

|Ψ0〉 = 1√
MN

(
N−1∑

i=0

M−1∑

j=0

|i〉|j〉
︸ ︷︷ ︸

|0〉|0〉|0〉
)

|ancilla〉.

Step4. Observe the first and second register: let i0 and j0 be the output.

Step5. If −→ai0 =
−→
bj0 , return result i0 and j, and exit.

Step6. Otherwise, set Γ to min
{

λΓ,
√
MN

}

and go to step2.

Subroutine 1 is similar to BBHT algorithm, and the main different between the two

algorithms is that Grover iteration is replaced by general Grover iteration Ggeneral.

Similar to BBHT algorithm, we assume that 1 ≤ |C| ≤ 3
4
|A| × |B| in this paper, where

|.| denotes the size of set. If |C| > 3
4
|A| × |B|, we can applied classical full search method

to got parts of solutions efficiently, and call subroutine 1 again. Similar to BBHT, the case

A ∩ B = ∅ (i.e., empty set) is handled by subroutine 1.

Similar to BBHT algorithm, subroutine 1 has time complexity O
(√

|A|×|B|
|A∩B|

)

.

Similar to BBHT algorithm, the output of subroutine 1 is a solution or not a solution.

And the probability that output is a solution is bigger than 1
2
, and the probability that

output is not a solution is less than 1
2
. Repeating subroutine 1 twice, a solution will be

obtained.

C. Quantum Search Algorithm for C = A ∩B (Q Intersection)

Step1. C = ∅ (i.e., empty set) and nF lag = FALSE; Save all elements of set A and B

in a database, each element is a record. And the database is in electronic memory.
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Step2. while (nF lag = FALSE )

{
Step2-1. Call subroutine 1 to find a solution −→ai0 =

−→
bj0 ;

Step2-2. If there is no output from subroutine 1, nF lag = TRUE;

If −→ai0 /∈ C, C ←− C ∪ {−→ai0}. And update the database such that the records

of vector −→ai0 and
−→
bj0 are different from all records and the two vectors are also different.

Continue. (Notice: The case −→ai0 ∈ C will not happen in next calling subroutine 1 because

database is updated.)

}
Step3. Call subroutine 1 to find a solution again. If there is no output from subroutine

1, halt the algorithm. Otherwise, let nF lag = FALSE and go to step2.

D. The Analysis of Time Complexity for Q Intersection

Conclusion: Algorithm Q Intersection has time complexity O
(√

|A| × |B| × |C|
)

,

where |·| denotes the size of set.

Proof: Similar to BBHT algorithm, the case |C| = 0 is handled by this algorithm, and

running time is O(
√
MN). The following discussion is under the condition |C| ≥ 1.

Before firstly calling subroutine 1, there are t = |C| = |A ∩ B| numbers of unknown

solutions. The sizes of set A and B are both constant during the whole calculation. Thus,

the scale of problem is t = |C|. Suppose we need It = I|C| steps of computation to obtain all

solutions. During the first computation of calling subroutine 1, c
√

MN
|C| steps of computation

are cost, where c denotes a constant, |A| = N and |B| = M . The output of subroutine 1

is a solution or not a solution. After executing step2-1 (i.e., subroutine 1), two cases are

happened. And the first case is that the output of subroutine 1 is a solution, and the second

case is that the output is not a solution. The probability of the first case Pcase1 is bigger

than 1
2
, while the probability of the second case Pcase2 is less than

1
2
. That is, there is a real

number ε (0 ≤ ε ≤ 1
2
) such that Pcase1 = 1

2
+ ε and Pcase2 = 1

2
− ε . When the first case

happen, the scale of problem becomes t− 1 = |C| − 1, and It−1 = I|C|−1 computation steps

will be needed for all of remnant calculations. When the second case happen, the scale of

problem is still |C|, and It = I|C| computation steps will be needed again.

When secondly calling subroutine 1, the situation is same. When the scale of problem
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(i.e., the number of unknown solutions) is t, c
√

MN
t

steps of computation are cost for calling

subroutine 1, and the number of remnant steps is (1
2
+ ε)It−1 + (1

2
− ε)It. That is,

It = c

√

MN

t
+ (

1

2
+ ε)It−1 + (

1

2
− ε)It

With the iterative computation increasing, the scale of problem t become smaller. When

t = 1, O(
√
MN) steps of computation will be cost by subroutine 1, i.e., I1 = c1

√
MN ,

where c1 is a constant.

The time complexity can by analyzed by the above way. Therefore, the following recursion

equation is obtained to calculate time complexity:







It = c
√

MN
t

+ (1
2
+ ε)It−1 + (1

2
− ε)It

I1 = c1
√
MN

1 ≤ t ≤ |C| , 0 ≤ ε ≤ 1
2

(4)

, where It denotes the number of computation steps when there are t number of unknown

solution.

By Eq.4, we have

It − It−1 = 2c

√
MN√
t
− 2ε(It − It−1) (5)

Performing
(
I|C| − I|C|−1

)
+
(
I|C|−1 − I|C|−2

)
+ ... (I2 − I1), we have

I|C| − I1 = 2c
√
MN(

|C|
∑

i=2

1√
i
)− 2ε(I|C| − I1)

Because I|C| ≥ I1 and ε ≥ 0, we have

I|C| − I1 ≤ 2c
√
MN(

|C|
∑

i=2

1√
i
)

That is,

I|C| ≤ 2c
√
MN(

|C|
∑

i=2

1√
i
) + I1

We have
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I|C| ≤ 2c
√
MN(

|C|∫

1

1√
x
dx) + I1

I|C| ≤ 4c
√

|C|MN + (c1 − 4c)
√
MN

i.e.,

I|C| ≤ (4c+
c1 − 4c
√

|C|
)
√

|C|MN

Because |C| ≥ 1, we have







I|C| ≤ c1
√

|C|MN if c1 ≥ 4c

I|C| ≤ 4c
√

|C|MN if c1 < 4c

Thus, there is a constant λ > 0 such that

I|C| ≤ λ
√

|C|MN

That is,

I|C| = O(
√

|A| × |B| × |C|) (6)

Formula 6 shows that Q Intersection algorithm has time complexity

O
(√

|A| × |B| × |C|
)

. That is, only O
(√

|A| × |B| × |C|
)

steps of computation are needed

to calculate intersection set C = A ∩ B, while O (|A| × |B|) steps are needed for classi-

cal computation. The quantum algorithm Q Intersection is fast than classical method by

O
(√

|A|×|B|
|C|

)

factors.

In addition, the probability of BBHT algorithm to find a solution is bigger than 1
2
. Similar

to BBHT algorithm, The successful probability of subroutine 1 is bigger than 1
2
. That is,

calling subroutine 1 twice can find a solution with 100% probability approximately. Step2

and step 3 of Q Intersection algorithm guarantee the successful probability is close to 100%

approximately.

Because A ∪ B = I − A ∩ B, the presented algorithm can be used to calculate union

operation also. In sum, using the method of Q Intersection to perform set operation is

possible.
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III. CONCLUSION

The set operations, such as intersection, union and complement, are the fundamental

calculation in mathematics. Set operation is the base of many sciences and techniques,

such as database, signal processing and image processing. E.g., database is based on set

operation. Designing fast algorithm for set operation is significant.

Full search method is the common method of set operation in general because sorting

multi-dimensional data is not very useful to improve running speed. Full search has time

complexity O (|A| × |B|) for the intersection C = A ∩ B, which is very slow still when the

size of set is huge. Electronic computer loads data into register one by one from memory,

and the efficiency bottleneck is formed.

In this paper, the quantum search algorithm for intersection operation of set (named

Q Intersection) is presented, which is the combination of Grover’ algorithm, classical mem-

ory, classical iteration. Using the method of Q Intersection, the quantum algorithms for

other set operations can be designed also.

The advantages of Q Intersection are listed as below.

1. Q Intersection has time complexity O
(√

|A| × |B| × |C|
)

, while classical algorithm

has time complexity O (|A| × |B|), where |·| denotes the size of set. Q Intersection is fast

than classical method by O
(√

|A||B|
|C|

)

.

2. All information of data can be loaded into quantum state by O (log2 |A| |B|) steps

of computation in Q Intersection, and all data is loaded at a same time, while classical

computer can only load data one by one and O(|A| |B|) steps are needed. And the efficiency

bottleneck of electronic computer is evaded.

3. In step2-2 of Q Intersection, the data in the electronic memory is often updated

according to the output of quantum algorithm, which simplifies the design of quantum

algorithm. As well known, data in the superposition of states can not be updated as a given

number and can not be measured when unitary operation acting on this superposition.

This defect make designing quantum algorithm very difficult. Q Intersection shows that

the combination between quantum algorithm and classical memory is useful to decrease the

complexity of designing quantum algorithm.
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