Skip to main content
Log in

Semi-quantum information splitting using GHZ-type states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By using a generalized Greenberger–Horne–Zeilinger (GHZ) state in which is locally unitarily connected with standard GHZ state as a communication channel, semi-quantum key distribution is extended to study semi-quantum information splitting protocols for secret sharing of quantum information. In our scheme, quantum Alice splits arbitrary two, three and N-qubit states with two classical parties, Bob and Charlie, in a way that both parties are sufficient to reconstruct Alice’s original states only under the condition of which she/he obtains the help from another one, but one of them cannot. The presented protocols are helpful for both secure against certain eavesdropping attacks and economical in processing of quantum information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bennett C.H., Brassard G., Crépeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  3. Wang Z.S.: Geometric quantum computation and dynamical invariant operators. Phys. Rev. A 79(2), 024304 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. Wang Z.S., Wu C.F., Feng X.L., Kwek L.C., Lai C.H., Oh C.H., Vedral V.: Nonadiabatic geometric quantum computation. Phys. Rev. A 76(4), 044303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  5. Wu C.F., Wang Z.S., Feng X.L., Goan H.S., Kwek L.C., Lai C.H., Oh C.H.: Unconventional geometric quantum computation in a two-mode cavity. Phys. Rev. A 76(2), 024302 (2007)

    Article  ADS  Google Scholar 

  6. Feng X.L., Wang Z.S., Wu C.F., Kwek L.C., Lai C.H., Oh C.H.: Scheme for unconventional geometric quantum computation in cavity QED. Phys. Rev. A 75(5), 052312 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  7. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  9. Cleve R., Gottesman D., Lo H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651 (1999)

    Article  ADS  Google Scholar 

  10. Nascimento A.C.A., Mueller-Quade J., Imai H.: Improving quantum secret-sharing schemes. Phys. Rev. A 64(4), 042311 (2001)

    Article  ADS  Google Scholar 

  11. Zhang Z.J., Li Y., Man Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  12. Zheng S.B.: Splitting quantum information via W states. Phys. Rev. A 74(5), 054303 (2006)

    Article  ADS  Google Scholar 

  13. Muralidharan S., Panigrahi P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  14. Markham D., Sanders B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  15. Nie Y.Y., Li Y.H., Liu J.C., Sang M.H.: Quantum information splitting of an arbitrary three-qubit state by using two four-qubit cluster states. Quantum Inf. Process. 10(3), 297–305 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nie Y.Y., Li Y.H., Liu J.C., Sang M.H.: Quantum state sharing of an arbitrary three-qubit state by using four sets of W-class states. Opt. Commun. 284(5), 1457–1460 (2011)

    Article  ADS  Google Scholar 

  17. Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein Podolsky Rosen pairs. Phys. Rev. A 72(4), 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  18. Muralidharan S., Panigrahi P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  19. Choudhury S., Muralidharan S., Panigrahi P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A 42(11), 115303 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. Boyer M., Kenigsberg D., Mor T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. Boyer M., Gelles R., Kenigsberg D., Mor T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  22. Li Q., Chan W.H., Long D.Y.: Semi-quantum secret sharing using entangled states. Phys. Rev. A 82(2), 022303 (2010)

    Article  ADS  Google Scholar 

  23. Dur W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62(6), 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  24. Bouwmeester D., Pan J.W., Daniell M., Weinfurter H., Zeilinger A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82(7), 1345–1349 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. An N.B.: Teleportation of coherent-state superpositions within a network. Phys. Rev. A 68(2), 022321 (2003)

    Article  ADS  Google Scholar 

  26. Deng F.G., Li C.Y., Li Y.S., Zhou H.Y., Wang Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  27. Li X.H., Zhou P., Li C.Y., Zhou H.Y., Deng F.G.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B: At. Mol. Opt. Phys. 39(8), 1975–1980 (2006)

    Article  ADS  Google Scholar 

  28. Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39(3), 459–464 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. Kim Y.H., Kulik S.P., Shih Y.: Quantum teleportation of a polarization state with a complete Bell state measurement. Phys. Rev. Lett. 86(7), 1370–1373 (2001)

    Article  ADS  Google Scholar 

  30. Shi R.H., Huang L.S., Yang W., Zhong H.: Asymmetric multi-party quantum state sharing of an arbitrary m-qubit state. Quantum Inf. Process. 10(1), 53–61 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hou K., Liu G.H., Zhang X.Y., Sheng S.Q.: An efficient scheme for five-party quantum state sharing of an arbitrary m-qubit state using multiqubit cluster states. Quantum Inf. Process. 10(4), 463–473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shi R.H., Huang L.S., Yang W., Zhong H.: Effcient symmetric five-party quantum state sharing of an arbitrary m-qubit state. Int. J. Theor. Phys. 50(11), 3329–3336 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-you Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Yy., Li, Yh. & Wang, Zs. Semi-quantum information splitting using GHZ-type states. Quantum Inf Process 12, 437–448 (2013). https://doi.org/10.1007/s11128-012-0388-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0388-5

Keywords

Navigation