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Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem

is investigated using tripartite entangled qutrit states. Amplitude damping, depolarizing,

phase damping, trit-phase flip and phase flip channels are considered to analyze the

behaviour of players payoffs. It is seen that Alice’s payoff is heavily influenced by the

amplitude damping channel as compared to the depolarizing and flipping channels. However,

for higher level of decoherence, Alice’s payoff is strongly affected by depolarizing noise.

Whereas the behaviour of phase damping channel is symmetrical around 50 % decoherence.

It is also seen that for maximum decoherence (p = 1), the influence of amplitude damping

channel dominates over depolarizing and flipping channels. Whereas, phase damping

channel has no effect on the Alice’s payoff. Therefore, the problem becomes noiseless

one at maximum decoherence in case of phase damping channel. Furthermore, the Nash

equilibrium of the problem does not change under decoherence.

Keywords: Decoherence; qutrit channels; Kolkata restaurant problem.

I. INTRODUCTION

Game theory a branch of applied mathematics, was initially developed for use in economics

by von Neumann and Morgenstern [1] and important contributions were given by John Nash [2].

It attempts to capture mathematical behavior in strategic situations, in which an individual’s

success of making a choice depends on the choice of the other players. It is usually used to model

the behavior of biological, economical and computer systems. During last few years, a number of

classical games has been converted into the realm of quantum mechanics [3-18]. Recently, Miszczak

et al. [19] has studied a qubit flip game on a Heisenberg spin chain. They have shown that being

http://arxiv.org/abs/1111.3913v2
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well aware of the dimensionality of the system, a player can achieve a mean payoff equal to almost

1. More recently, Sharif et al. [20] has proposed the quantum solution to a three-player Kolkata

Restaurant problem. The Kolkata Paise Restaurant (KPR) [21] is a repeated game similar to the

Minority games, played between a large number of agents having no interaction among themselves.

Since quantum minority games [22-25] has attracted much attention in recent years. They have also

been analyzed under the influence of decoherence by Flitney and Hollenberg [26]. It is therefore,

important to study the behaviour of quantum restaurant problem in the presence of environmental

influences.

Since, it is not possible to completely isolate a quantum system from its environment. Therefore,

it is important to study the system-environment dynamics in the presence of environmental effects.

Quantum games may provide a feasible platform for implementing quantum information processing

in physical systems [27] and can be used to probe the influence of decoherence in such systems

[6, 28-31]. In this connection, quantum channels provide a natural theoretical framework for the

study of decoherence in noisy quantum communication systems. Quantum error correction [32-33]

and entanglement purifications [34] can be employed to avoid the problem of decoherence.

In this paper, the effect of quantum decoherence in a three-player quantum Kolkata restaurant

problem is studied using entangled qutrit states. By considering different noisy qutrit channels

parameterized by decoherence parameter p such that p ∈ [0, 1]. The lower and upper limits of

decoherence parameter represent the fully coherent and fully decohered system, respectively. It is

seen that for lower level of decoherence, amplitude damping channel heavily influences the payoffs

as compared to the depolarizing and flipping channels. However, for higher level of decoherence,

the payoff is strongly affected by depolarizing noise. On the other hand, the behaviour of phase

damping channel is symmetrical around 50 % decoherence. Furthermore, the Nash equilibrium of

the problem does not change under decoherence.

II. DECOHERENCE AND QUANTUM KOLKATA RESTAURANT PROBLEM

In the Kolkata Paise Restaurant (KPR) problem, N non-communicating agents have to choose

between n choices. The agents receive a gain in their utility if their choice is not too crowded,

i.e. the number of agents that made the same choice is under some threshold limit. The choices

can also have different values of utility associated with them, accounting for a preference profile

over the set of choices. Therefore, in KPR, N prospective customers choose from N restaurants

each evening in a parallel decision mode. Each restaurant have identical price but different rank k
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(agreed by the all the N agents) and can serve only one customer. If more than one agents arrive

at any restaurant on any evening, one of them is randomly chosen and is served and the rest do

not get dinner that evening.

For the sake of simplicity, let the three agents, Alice, Bob and Charlie have three possible

choices: security 0, security 1 and security 2. They receive a payoff $ = 1 if their choice is unique,

otherwise they receive $ = 0. Therefore, the game is a one shoot game, that is, it is a non-iterative,

and the agents have no information from previous rounds. Since the agents cannot communicate,

therefore, there is nothing left to do other than randomizing between the choices. Randomization

gives the agent i an expected payoff of Ec($) = 4/9, where the superscript c represents the classical

strategy.

In this problem, let Alice, Bob and Charlie share a general tripartite entangled qutrit state of

the form

ρin = f |Ψin〉 〈Ψin|+
(1− f)

27
I27 (1)

where the parameter f controls the degree of entanglement and

|Ψin〉 =
1√
3
(|000〉 + |111〉 + |222〉) (2)

In order to analyze the effect of entanglement, another general initial state is also considered as

given below

|Ψin〉 = sin θ cosφ|000〉 + sin θ sinφ|111〉 + cos θ|222〉 (3)

where 0 ≤ θ ≤ π and 0 ≤ θ ≤ 2π. If we set θ = π/4, 3π/4 and φ = ± cos−1(1/
√
3) in the above

equation, the three-qutrit state becomes the maximally entangled state. The strategies of the

players can be defined by the unitary operator U acting on the initial qutrit state of the problem

given as [35]

U =











z1 ω̄1 z̄2ω3 − z̄3ω2

z2 ω̄2 z̄3ω1 − z̄1ω3

z3 ω̄3 z̄1ω2 − z̄2ω1











(4)

where

−→z =











sin θ cosφeiα1

sin θ sinφeiα2

cos θeiα3











(5)
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and

−→ω =











cosχ cos θ cosφei(β1−α1) + sinχ sinφei(β2−α1)

cosχ cos θ sinφei(β1−α2) − sinχ cosφei(β2−α2)

− cosχ sin θei(β1−α3)











(6)

where 0 ≤ χ ≤ π/2 and 0 ≤ β1, β2 ≤ 2π. After the action of players unitary operators the state of

the game transform to

ρ
f́
= (U †

A ⊗ U †
B ⊗ U †

C)(|Ψin〉 〈Ψin|)(UA ⊗ UB ⊗ UC) (7)

The evolution of the state of a quantum system in a noisy environment can be described by the

super-operator Φ in the Kraus operator representation as [1]

ρ̃f = Φρf =
∑

k

EkρfE
†
k (8)

where the Kraus operators Ei satisfy the following completeness relation

∑

k

E†
kEk = I (9)

We have constructed the Kraus operators for the game from the single qutrit Kraus operators (as

given in equations (9-11) below) by taking their tensor product over all n2 combination of π (i)

indices

Ek = ⊗
π
eπ(i) (10)

where n is the number of Kraus operators for a single qutrit channel. The single qutrit Kraus

operators for the amplitude damping channel are given by [36]

E0 =











1 0 0

0
√
1− p 0

0 0
√
1− p











, E1 =











0
√
p 0

0 0 0

0 0 0











, E2 =











0 0
√
p

0 0 0

0 0 0











(11)

Similarly, the single qutrit Kraus operators for the phase damping channel are given as [36]
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E0 =
√

1− p











1 0 0

0 1 0

0 0 1











, E1 =
√
p











1 0 0

0 ω 0

0 0 ω2











, (12)

where ω = e
2πi
3 . The single qutrit Kraus operators for the depolarizing channel are given by [37]

E0 =
√

1− pI, E1 =

√

p

8
Y, E2 =

√

p

8
Z, E3 =

√

p

8
Y 2, E4 =

√

p

8
Y Z (13)

E5 =

√

p

8
Y 2Z, E6 =

√

p

8
Y Z2, E7 =

√

p

8
Y 2Z2, E8 =

√

p

8
Z2 (14)

where

Y =











0 1 0

0 0 1

1 0 0











, Z =











1 0 0

0 ω 0

0 0 ω2











(15)

The single qutrit Kraus operators for the phase flip channel are given by

E0 =











1 0 0

0
√
1− p 0

0 0
√
1− p











, E1 =











0
√
p 0

0 0 0

0 0 0











, E2 =











0 0
√
p

0 0 0

0 0 0











(16)

and the single qutrit Kraus operators for the trit-phase flip channel are given by

E0 =

√

1− 2p

3











1 0 0

0 1 0

0 0 1











, E1 =

√

p

3











0 0 e
2πi
3

1 0 0

0 e
−2πi

3 0











,

E2 =

√

p

3











0 e
−2πi

3 0

0 0 e
2πi

3

1 0 0











, E3 =

√

p

3











0 e
2πi
3 0

0 0 e
−2πi

3

1 0 0











(17)

where p = 1− e−Γt represents the quantum noise parameter usually termed as decoherence param-

eter. Here the bounds [0, 1] of p correspond to t = 0, ∞ respectively. The final state of the game
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after the action of the channel can be written as

ρf = Φp(ρf ) (18)

where Φα is the super-operator realizing the quantum channel parametrized by the real number p

(decoherence parameter). The payoff operator for ith player (say Alice) can be written as

PA =

2
∑

x3,x2,x1=0

|x3x2x1〉 〈x3x2x1| , x3 6= x2 6= x1

+
2

∑

x3,x2,x1=0

|x3x2x1〉 〈x3x2x1| , x3 = x2 6= x1

(19)

The payoff of ith player can be calculated as

Ei($) = Tr{PAρ̃f} (20)

where Tr represents the trace of the matrix. The optimal strategy for players is found to be Uopt

given by

Uopt(θ, φ, χ, α1, α2, α3, β1, β2) = (
π

4
, cos−1(1/

√
3),

π

4
,
5π

18
,
5π

18
,
5π

18
,
π

3
,
11π

6
)

(21)

It is seen that the results are consistent with Ref. [20] for p = 0.

In order to interpret the effect of decoherence on the three-player quantum Kolkata restaurant

problem, different graphs has been plotted as a function of decoherence parameter. In figure (1),

Alice’s payoff is plotted as a function of decoherence parameter p for (a) f = 0.2, (b) f = 0.5,

(c) f = 1 and θ = π
4 , φ = cos−1(1/

√
3) for amplitude damping, depolarizing, phase damping,

trit-phase flip and phase flip channels, where AD, Dep, PD, TPF and PF represent the amplitude

damping, depolarizing, phase damping, trit-phase flip and phase flip channels respectively. It is

seen that Alice’s payoff is heavily influenced by the amplitude damping channel as compared to

the depolarizing and flipping channels. In figures (2 and 3), Alice’s payoff is plotted as a function

of θ and φ for p = 0.3 and p = 0.7 (a) amplitude damping, (b) phase damping, (c) depolarizing

and (d) trit-phase flip channels, respectively, for the state of equation (3). It is seen that for

higher level of decoherence (see figure 3), Alice’s payoff is strongly affected by depolarizing noise.

Whereas the behaviour of phase damping channel remains symmetrical around 50 % decoherence.

In figures (4), Alice’s payoff is plotted as a function of θ and φ for p = 1 (a) amplitude damping, (b)
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phase damping, (c) depolarizing and (d) trit-phase flip channels, respectively. It is shown that for

maximum decoherence i.e. p = 1, amplitude damping channel dominates over the depolarizing and

flipping channels having considerable reduction in the payoff. Whereas, phase damping channel has

no effect on the Alice’s payoff. In case of phase damping channel, the problem becomes noiseless

at maximum decoherence. However, maximal entanglement gives the maximum payoff (6/9 at

p = 0) and it reduces as one changes the degree of entanglement from its maxima or introduces

the value of decoherence parameter p > 1. Furthermore, the Nash equilibrium of the problem does

not change under decoherence.

III. CONCLUSIONS

Quantum three-player Kolkata restaurant problem is investigated in the presence of decoherence

using tripartite entangled qutrit states using amplitude damping, depolarizing, phase damping, trit-

phase flip and phase flip channels. It is seen that for lower level of decoherence, amplitude damping

channel heavily influences the payoffs as compared to the depolarizing and flipping channels. How-

ever, for higher level of decoherence, the payoff is strongly affected by depolarizing noise. It is

also seen that for maximum level of decoherence, amplitude damping channel dominates over the

depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice’s

payoff at p = 1. Therefore, the problem becomes noiseless at maximum decoherence for phase

damping channel only. Furthermore, the Nash equilibrium of the problem does not change under

decoherence.
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Figures captions
Figure 1. (Color online). Alice’s payoff is plotted as a function of decoherence parameter p for (a)

f = 0.2, (b) f = 0.5, (c) f = 1 and θ = π
4 , φ = cos−1(1/

√
3) for amplitude damping, depolarizing,

phase damping, trit-phase flip and phase flip channels.

Figure 2. (Color online). Alice’s payoff is plotted as a function of θ and φ for p = 0.3 (a)

amplitude damping, (b) phase damping, (c) depolarizing and (d) trit-phase flip channels for the

state of equation.

Figure 3. (Color online). Alice’s payoff is plotted as a function of θ and φ for p = 0.7 (a)

amplitude damping, (b) phase damping, (c) depolarizing and (d) trit-phase flip channels for the

state of equation.

Figure 4. (Color online). Alice’s payoff is plotted as a function of θ and φ for p = 1 (a) amplitude

damping, (b) phase damping, (c) depolarizing and (d) trit-phase flip channels for the state of

equation.
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FIG. 1: (Color online). Alice’s payoff is plotted as a function of decoherence parameter p for (a) f = 0.2,

(b) f = 0.5, (c) f = 1 and θ = π

4
, φ = cos−1(1/

√
3) for amplitude damping, depolarizing, phase damping,

trit-phase flip and phase flip channels.
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FIG. 2: (Color online). Alice’s payoff is plotted as a function of θ and φ for p = 0.3 (a) amplitude damping,

(b) phase damping, (c) depolarizing and (d) trit-phase flip channels for the state of equation.
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