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Projective measurements of a single two-level quantum mechanical system (a qubit) evolving under
a time-independent Hamiltonian produce a probability distribution that is periodic in the evolution
time. The period of this distribution is an important parameter in the Hamiltonian. Here, we
explore how to design experiments so as to minimize error in the estimation of this parameter.
While it has been shown that useful results may be obtained by minimizing the risk incurred by
each experiment, such an approach is computationally intractable in general. Here, we motivate
and derive heuristic strategies for experiment design that enjoy the same exponential scaling as fully
optimized strategies. We then discuss generalizations to the case of finite relaxation times, T2 <∞.

Introduction. Measurement adaptive tomography has
recently been suggested as an efficient means of perform-
ing partial quantum process tomography [5, 11]. Little
is known about optimal protocols when realistic exper-
imental restrictions are imposed — as opposed to the
case where one is allowed arbitrary quantum resources1.
Indeed, even in the simplest examples, not even bounds
have been given on the proposed protocols. Here, we give
analytic bounds on both non-adaptive and adaptive es-
timation protocols for a Hamiltonian parameter estima-
tion problem. Moreover, we derive estimation protocols
which asymptotically achieve these bounds. Adaptive
protocols are typically difficult to implement because a
complex optimization problem must be solved after each
measurement. We instead derive a heuristic that is easy
to implement and achieves the exponentially improved
asymptotic risk scaling of the optimal solution.

Within the nuclear magnetic resonance (NMR) com-
munity, similar concerns have motivated the examination
of the use of maximum entropy [1] and maximum likeli-
hood [3] methods for obtaining spectra. Recently, com-
putational power has become available such as to make
these methods feasible for use in analyzing non-uniform
data obtained from high-dimensional NMR experiments
[8]. These studies have produced qualitatively similar
strategies for how to best design experiments when each
sample is expensive to collect.

The paper is organized as follows. First, we define
the model Hamiltonian which we want to estimate the
parameters of, along with our metric of success. Then
we give both frequentist and Bayesian lower bounds on
the risk derived from this metric. Finally, we derive
strategies which achieve the asymptotic scaling of these

1 As in the standard phase estimation protocol. See e.g. [2].

bounds.
Problem statement. The model we consider is a qubit

evolving under the Hamiltonian

H =
ω

2
σz.

Here ω is the unknown parameter whose value we want
to ascertain. We make the problem dimensionless by as-
suming ω ∈ (0, 1). An experiment consists of preparing a
single known input state |+〉, evolving under the Hamil-
tonian H for a controllable time t and performing a mea-
surement in the σx basis. We emphasize here that we are
assuming strong projective measurements on individual
copies of a quantum preparation, rather than weak mea-
surements on physical ensembles such as those studied in
NMR experiments.

The outcomes of the measurement we label d ∈ {0, 1},
where 0 and 1 refer to |+〉 and |−〉, respectively. An
experiment design consists of a specification of the time
t that we evolve a qubit under H before we measure.
The likelihood function for a given experiment t is then

given by the Born rule Pr(0|ω, t) =
∣∣〈+|e−iHt|+〉∣∣2 and

Pr(1|ω, t) = 1−Pr(0|ω, t). Using our model Hamiltonian,
we can express the likelihood more simply as:

Pr(d|ω, t) = sin2
(ω

2
t
)d

cos2
(ω

2
t
)1−d

. (1)

Note that this model does not include noise. Below, we
somewhat generalize this model by including limited vis-
ibility and a T2 dephasing process.

If we desire an estimate ω̂ of the true value ω, a com-
monly used figure of merit is the squared error loss:

L(ω, ω̂) = |ω − ω̂|2 .

The risk of an estimator, which is a function that takes
data sets (D,T ) := ({dk}, {tk}) to estimates ω̂(D,T ), is
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its expected performance with respect to the loss func-
tion:

R(ω, ω̂) =
∑
D

Pr(D|ω, T )L(ω, ω̂(D,T )).

For squared error loss, the risk is also called the mean
squared error (MSE).

Mean squared error lower bound. The difficulty here
is that the random outcomes of the measurements are
not identically distributed. In fact, since they depend on
the measurement time, each one could be different. Al-
though, asymptotic results exist for non-identically dis-
tributed random variables2, these results are derived for
insufficient statistics, such as the sample mean. More-
over, we desire to provide computationally tractable
heuristics that permit useful estimates with a finite num-
ber of samples.

Although it is quite difficult to obtain exact expressions
for the risk for arbitrary measurement times, in some
cases we have obtained an asymptotically tight lower
bound. For unbiased estimators, we can appeal to the
Cramer-Rao bound [4]

R(ω, ω̂) ≥ 1

I(ω)
, (2)

where

I(ω) = −
∑
D

Pr(D|ω, T )
∂2 log(Pr(D|ω, T ))

∂ω2
(3)

is called the Fisher information. In our particular case,
the Fisher information reduces to quite a simple form in

I(ω) =

N∑
k=1

t2k, (4)

which is conveniently independent of ω (a derivation is
given in Appendix A). Thus, the mean squared error is
lower bounded by

R(ω, ω̂) ≥ 1∑N
k=1 t

2
k

. (5)

Later we show that this bound becomes exponentially
suppressed when we include noise in our model. In gen-
eral, this quantity is dependent on the true parameter
ω.

The Bayesian solution considers the average of the risk,
called the Bayes risk, with respect to some prior π(ω):

r(π, ω̂) =

∫
R(ω, ω̂)π(ω)dω.

2 The frequentist reference is [7], while a useful Bayesian reference
is [12].

As in references [5, 11], we choose a uniform prior for
ω ∈ (0, 1). Then, the final figure of merit is the average
mean squared error:

r(ω̂) =

∫
R(ω, ω̂)dω.

The goal is to find a strategy which minimizes this quan-
tity. Although there exist Bayesian generalizations of the
Cramer-Rao bound [6], ours is independent of ω and thus
remains unchanged by integrating equation (5) over the
parameter space:

r(ω̂) ≥ 1∑N
k=1 t

2
k

. (6)

Note also that, in general, Bayesian Cramer-Rao bounds
require fewer assumptions to derive than the standard
(frequentist) bound. Although they are the same for this
model, they differ for a more general model considered
later. In broad strokes, the difference in practice between
Bayesian and frequentist methods is averaging versus op-
timization. Below we demonstrate a heuristic strategy
which draws from both methods to achieve the goal of
determining the measurement times which give the low-
est possible achievable bound on the Bayes risk (6).

Looseness of the Cramer-Rao bound. As useful as the
Bayesian Cramer-Rao lower bound (6) is, it is simple to
see that it is not always achievable. We can obtain a
lower bound by considering the best protocol we could
possibly hope for in any two-outcome experiment. In
such a protocol, one bit of experimental data provides
exactly one bit of certainty about the parameter ω. If
we learn the bits of ω in sequence, at each step k, our
risk is upper bounded by the worst-case where all the
remaining bits of ω are either all 0 or all 1. In either
case, the error incurred by estimating a point between the
two extremes is given by

∑∞
n=k+2 2−n = 2−(k+1), leading

to the best possible MSE after N measurements being
2−2(N+1), even though we can make a smaller Cramer-
Rao bound by choosing times that grow faster than this
exponential function. Note that this risk is achievable
via the standard phase estimation protocol [2], but that
this protocol requires quantum resources which are not
part of our model.

Examples. Let us consider a couple of examples for
which the lower bound can be further simplified. First,
consider the case when all the measurement times are
the same. This is by far the simplest case, since the out-
comes become identically distributed. Recall ω ∈ (0, 1).
Then, the measurement time should be less then the first
Nyquist time, t ≤ π, or the data will be consistent with
more than one ω. That is, for t > π (but less than 2π,
say), the likelihood function will have two equally likely
maxima. We minimize the risk, then, by choosing t = π.
Then, the maximum likelihood estimator (MLE), for ex-
ample, will be asymptotically efficient [9] achieving the
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Cramer-Rao lower bound

r(ω̂MLE) =
2

π2N
+O

(
1

N2

)
.

Now consider a uniform grid of times. Since ω ∈ (0, 1),
we should choose the Nyquist sampling rate: tk = kπ.
Then, for any estimator ω̂ using data collected at these
measurement times, the Cramer-Rao bound gives

r(ω̂) ≥ 6

π2N(1 +N)(1 + 2N)
=

3

π2N3
+O

(
1

N4

)
.

Again, the maximum likelihood estimator will be asymp-
totically efficient. However, since the likelihood function
will have many local maxima, the maximum likelihood
estimator is non-trivial to find as gradient methods are
not guaranteed to work. Bayesian estimators were de-
rived in [11], where simulations yielded ∼ 1/N3 risk scal-
ing which is asymptotically efficient.

Note that since we are considering a uniform spacing of
times, we can apply a Fourier estimation technique with-
out worrying about spectral aliasing introduced by non-
uniformity [10]. That is, we apply the discrete Fourier
transform and estimate the peak of the power spectrum.
Since the resolution in the frequency domain is 1/N4t,
we expect the Bayes risk to be

r(ω̂Fourier) =
1

π2N2
.

The sampling theorem requires that we sample from a
deterministic function, not a probability distribution. In
practice, this condition is often approximately satisfied
by sampling some stable statistic such as the mean value
of the distribution at each time. This can be achieved by
measuring at the same time until a sufficiently accurate
estimate of the mean at that time is obtained, then re-
peating this for many other times. But as we have shown,
this method can be quadratically improved by perform-
ing every single measurement at a different time.

Exponentially achievable lower bound. It has been
shown that Bayesian adaptive solutions lead to risk de-
creasing exponentially with the number of measurements
[11]. However, these results are given by fits to numerical
data. Here, we give an analytic lower bound on the risk
of these protocols.

The local (in time) Bayesian adaptive protocol can be
described as follows: (1) begin with a uniform prior Pr(ω)
and determine the first measurement time t1 ≈ 1.136π
which minimizes the average (over the two possible out-
comes) variance of the posterior distribution; (2) perform
a measurement at t1, record the outcome d1, and update
the distribution Pr(ω) 7→ Pr(ω|d1, t1) via Bayes’ rule; (3)
repeat step (1) replacing the current prior with the cur-
rent posterior. Note that the expected variance in the
posterior is the Bayes risk. Thus, the protocol attempts
to minimize the risk assuming the next measurement is

the last. Strategies that are local in this sense are called a
greedy strategies, as opposed to strategies which attempt
to minimize the risk over all future experiments.

For some choices of measurement times, including
those given by the protocol above, the posterior will be
approximately normally distributed3. This is guaranteed
in the asymptotic limit, but the posterior distribution
near its peak is also remarkably well approximated by a
Gaussian after as few as 15 reasonably chosen measure-
ments (we found a uniform grid tk = kπ to be sufficient
for “warming up” to the Gaussian approximation). Thus,
we approximate the current distribution (at given some
sufficiently long measurement record D) as

Pr(ω|D) =
1√

2πσ2
e−

(ω−µ)2

2σ2 ,

with some arbitrary mean µ and variance σ2 implied by
D. The expected posterior variance (which is equal to
the Bayes risk) of the probability distribution of the next
measurement is

r(t) = σ2

(
1 +

t2σ2 sin(µt)2

−et2σ2 + cos(µt)2

)
, (7)

(derived in Appendix B) which oscillates with frequency

2µ within an envelope σ2
(

1− t2σ2e−t
2σ
)

. Asymptoti-

cally, the minimum risk will approach the minimum of
the envelope for all µ, but will be a lower bound on the
risk otherwise. This minimum occurs at t̂ = 1

σ with a risk

of r(t̂) = (1 − e−1)σ2, which is also the variance of the
updated probability distribution since both outcomes are
equally probable at t̂. Thus, at each measurement step
we reduce the risk by 1−e−1 ≈ 0.632 ≈ e−0.459 ≈ 2−0.661.
Thus, the risk scales exponentially as r ∼ σ2(1 − e−1)N

and is achieved at measurement times which scale as

tk ∼
1

σ(1− e−1)k/2
≈ 1.26k

σ
.

These times are guaranteed to be optimal only in the
asymptotic limit. For finite numbers of samples, we sug-
gest two simple heuristics. First, we suggest the use of
exponentially increasing times, where the base of the ex-
ponent is optimized offline, followed by the use of the
maximum likelihood estimator for these times. Second,
we suggest a simpler adaptive scheme based on the as-
sumption that the distribution remains Gaussian after
each measurement. Making use of this normality as-
sumption, we only need update equations for the mean
and variance of the distribution over ω. In deriving the
update equations, we also take into account the oscilla-
tions of the expected Bayes risk by finding the nearest

3 This is true asymptotically and higher order corrections can be
used if required [12].
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FIG. 1: The Bayes risk – the average (over a uniform prior)
mean (over data) squared error – of the strategies discussed
in the paper. Data points are at evenly spaced measurement
numbers N ∈ {16, 20, 24, . . . , 124} and the lines are linear
interpolants to guide the eye. Each data point is the av-
erage of 104 simulations. In each figure, the noise param-
eter η = 1 since its inclusion only gives a constant offset.
From top to bottom, the relaxation characteristic time is
T2 = ∞, 1010π, 104π. The thin solid lines indicate the lower
bound given by Equation (10).

achievable minima to the one given by the lower bound.
We provide the update equations in Appendix C.

Generalization to finite T2. In practice, we will have to
consider not only experimental restrictions but also noise
and relaxation processes. Processes which do not affect
the quantum state can be effectively modeled by ran-
dom bit-flip errors occurring with probability 1−η. Pro-
cesses which do affect the quantum state (decoherence)

are modeled by an exponential decay of phase coherence4

with characteristic time T2. Since the state being mea-
sured lies in the xy-plane of the Bloch sphere, this loss
of phase coherence manifests as an exponential decaying
envelope being applied to the original likelihood (1). The
model is thus fully specified by the likelihood function

Pr(0|ω, t, η, T2) =

η

(
e−

t
T2 cos2

(ω
2
t
)

+
1− e−

t
T2

2

)
+

1− η
2

.
(8)

The Cramer-Rao bound is now given by

R(ω, ω̂) ≥

(
N∑
k=1

t2kη
2 sin2(ωtk)

e
2tk
T2 − η2 cos2(ωtk)

)−1
. (9)

Note that unlike the Cramer-Rao bound (5) for the noise-
less case, the above bound is not independent of ω and
thus we must appeal to the Bayesian Cramer-Rao bound
so that the measurement times can be chosen indepen-
dently of the true parameter. However, the Bayesian
bound turns out to be very loose. A sharper bound is
given by first upper bounding each term in the denomi-
nator to give

r(ω̂) ≥ 1

η2
∑N
k=1 t

2
ke
− 2tk
T2

.

The noise term (or visibility) η simply gives a constant
reduction in the achievable accuracy. The relaxation
process provides a more interesting dynamic as we see
that the gains from longer times are exponentially sup-
pressed. In other words, strategies are restricted to ex-
plore tk ≤ T2. We can thus do no better than

r(ω̂) ≥ e2

Nη2T 2
2

. (10)

The adaptive strategy discussed above can be gener-
alized to include noise and relaxation but the expres-
sions are more lengthy (see Appendix B). To illustrate
the performance of our adaptive strategy, we simulate
the adaptive strategy along with offline strategies using
identical times (tk = π), linearly spaced times (tk = kπ)
and exponentially sparse times (tk = (9/8)k). For each
strategy, we perform simulations for experiments consist-
ing of different numbers of samples N , up to N = 124,
and repeat each such simulation 104 to obtain an esti-
mate of the Bayes risk for that strategy and experiment
size. In Fig. 1, we present the results of these simulations

4 We do not include amplitude damping in our model since our
populations remain equal throughout evolution and thus T1 only
manifests as a contribution to T2.
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for the noiseless case, and for the cases T2 = 1010π and
T2 = 104π.

Note that in all cases, the adaptive strategy achieves
exponential scaling until the times selected reach t =
T2. At that point, the risk will then scale linearly if
the remaining measurement times are t = T2. However,
if the protocol continues to select larger measurement
times, the information gained from those measurements
will tend to zero and the risk will remain constant.

Summary and conclusions. By using the Cramer-Rao
bound along with analytic expressions for the variance of
each posterior distribution, we have motivated a heuris-
tic method for choosing experiment designs that asymp-
totically admits exponentially small error scaling in the
number of measurements. For finite measurements, we

have relied on numerical simulation to demonstrate that
this scaling is well-achieved even for N / 120. Numerical
simulations for finite T2, moreover, have suggested that
we can enjoy exponential scaling of the risk until the mea-
surement times saturate the T2 bound, at which point the
risk scaling switches to the asymptotic scaling of 1/N .
In both cases, the heuristics used to design experiments
are quite computationally tractable, thus motivating the
utility of our heuristics to actual experimental practice.

Acknowledgements. We thank Miriam Diamond for
assistance in testing and developing the simulation soft-
ware. CF thanks Josh Combes for helpful discussions.
This work was financially supported by NSERC and
CERC.

Appendix A: Derivation of Cramer-Rao Bounds

In this Appendix, we show that for the simple model represented by the likelihood function presented in equation
(1), the Fisher information given by (3) reduces to the form claimed in (4). To show this, we first note that the
likelihood for a vector D = (d1, d2, . . . , dk) of observations at times T = (t1, t2, . . . , tk) is given by a product of the
likelihoods for each individual measurement,

Pr(D|ω, T ) =
∏
k

Pr(dk|ω, tk).

Thus, the log-likelihood function is simply a sum over the individual log-likelihoods. Since the derivative operator
commutes with summation, we obtain that

∂2

∂ω2
log Pr(D|ω, T ) =

∑
k

∂2

∂ω2
log Pr(dk|ω, tk).

This in turn implies that the Fisher information for a vector of measurements is given by the sum for each measurement
of that measurement’s Fisher information.

To calculate the single-measurement Fisher information, we find the second derivative of the log-likelihood for a
single measurement is given by

∂2

∂ω2
log Pr(dk|ω, tk) = t2k

(2dk − 1) (1− 2dk + cos (ωtk))

((2dk − 1) cos (ωtk)− 1)
2 .

Thus, we find that the single-measurement Fisher information is given by

I(ω|tk) = −
∑

dk∈{0,1}

Pr(dk|ω, tk)
∂2

∂ω2
log Pr(dk|ω, tk)

= t2k
∑

dk∈{0,1}

(2dk − 1) (1− 2dk + cos (ωtk))

2 (2dk − 1) cos (ωtk)− 2

= t2k.

We conclude that I(ω|T ) =
∑
k t

2
k, as claimed.

For the model with finite T2 and limited visibility, given by the likelihood function (8), we can follow the same
logic. We find the second derivative of (8) with respect to ω gives us

∂2

∂ω2
log Pr(dk|ω, tk) = ηt2k ·

(2dk − 1)
(
η (1− 2dk) + e

tk
T2 cos (ωtk)

)
(
η (1− 2dk) cos (ωtk) + e

tk
T2

)2 .



6

The expected value of this derivative then gives us the Fisher information for a single measurement in the finite-T2
model,

I(ω|tk) =
η2t2k sin2 (ωtk)

e
2tk
T2 − η2 cos2 (ωtk)

.

Taking the sum of this information then produces the Cramer-Rao bound given in (9).

Appendix B: Asymptotic Scaling of the Bayes Risk

In this Appendix, we derive expressions for posterior distributions under the assumption of a normally-distributed
prior, and then apply these expressions to show the asymptotic scaling of the Bayes risk. We also derive update rules
that allow for expedient implementation of the greedy algorithm described in the main text.

Under the assumption of a normally-distributed prior, all prior information about the parameter ω can be charac-
terized by the mean µ and variance σ2 of the prior distribution. Thus, we shall write our priors as Pr(ω|µ, σ2) to reflect
the assumption of normality. Then, the probability of obtaining a datum d at time t given such prior information is
then given by

Pr(d|t;µ, σ2) =

∫ ∞
−∞

Pr(d|t, ω) Pr(ω|µ, σ2)dω =
1

4

(
2− (2d− 1)

(
1 + e2iµt

)
e−

1
2 t(σ

2t+2iµ)
)
.

Applying Bayes’ rule then produces the posterior distribution

Pr(ω|d, t;µ, σ2) =
Pr(ω|µ, σ2) Pr(d|t, ω)

Pr(d|t;µ, σ2)

=

√
2
π e
− (µ−ω)2

2σ2 ((1− 2d) cos(tω) + 1)

σ
(

2− (2d− 1) (1 + e2iµt) e−
1
2 t(σ

2t+2iµ)
) .

The mean and variance of this distribution are given by:

E[ω|d, t;µ, σ2] =
2
(

(2d− 1)e−
1
2σ

2t2
(
σ2t sin(µt)− µ cos(µt)

)
+ µ

)
2− (2d− 1) (1 + e2iµt) e−

1
2 t(σ

2t+2iµ)

V[ω|d, t;µ, σ2] = µ2 + σ2 −
2
(

(2d− 1)e−
1
2σ

2t2
(
σ2t sin(µt)− µ cos(µt)

)
+ µ

)
2− (2d− 1) (1 + e2iµt) e−

1
2 t(σ

2t+2iµ)

−
2(2d− 1)σ2teiµt

(
σ2t cos(µt) + 2µ sin(µt)

)
(2d− 1) (1 + e2iµt)− 2e

1
2 t(σ

2t+2iµ)

To chose optimal times, we wish to pick t so as to minimize the expected value over of the variance, where this
expectation is taken over possible data. Based on the previous expressions, we find that

Ed[Vω[ω|d, t;µ, σ2]] = σ2

(
1 +

t2σ2 sin(µt)2

−et2σ2 + cos(µt)2

)
,

in agreement with Equation (7).
This expected variance, which describes our risk incurred by measuring at a given t, is bounded below by an

envelope E(t, σ2) = σ2
(

1− t2σ2e−t
2σ2
)

. A pair of examples of the envelope E(t, σ2) and achievable risk r(t;µ, σ2) is

illustrated in Figure 2.
Note that the envelope is minimized by t̂ = argmintE(t, σ2) = 1/σ. Moreover, the expected variance saturates

the lower bound at intervals in t of 1/µ, but the width of the envelope’s minimum grows as 1/σ2, so that as more
measurements are performed, the bound becomes a good approximation for the minimum achievable risk. Thus, in
the asymptotic limit of large numbers of experiments, we have that the risk at scales with each step as the minimum
of the envelope,

E(t̂, σ2)

σ2
= 1− e−1 ≈ 0.632.
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We conclude that in the asymptotic limit, the risk decays as eN ln 0.632 ≈ e−0.458N , where N is the number of
measurements performed.

Appendix C: Update Equations for µ, σ2

In this Appendix, we state without derivation the update rules for µ and σ2 after obtaining a measurement result
d from an experiment performed at time t, under the assumption of an normal prior. For the simple model described
by Equation (1),

E [ω|d] = µ−
π(2d− 1)σ2(−1)k (2k − 1) exp

(
−π

2σ2(1−2k)2
8µ2

)
2µ

(11)

V [ω|d] = σ2 −
π2(1− 2d)2σ4 (1− 2k)

2
exp

(
−π

2σ2(1−2k)2
4µ2

)
4µ2

, (12)

where k = round
[
µ
πσ + 1

2

]
is used to pick the intersection of E(t, σ2) and r(t;µ, σ2) to the minimum of E, as described

in Appendix B.
For the finite-T2 model, the updated mean and variance are given by

E [ω|d] = µ+

π(2d− 1)(−1)k(2k − 1)σ2 exp

(
− (π−2πk)(−2πkσ2T2+4µ+πσ2T2)

8µ2T2

)
2µ

(13)

V [ω|d] = σ2 −
π2(2d− 1)2(2k − 1)2σ4 exp

(
− (π−2πk)(−2πkσ2T2+4µ+πσ2T2)

4µ2T2

)
4µ2

, (14)

where in this case,

k = round

[
µ− µ

√
4σ2T 2

2 + 1 + πσ2T2
2πσ2T2

]
.
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