Skip to main content
Log in

The Berry phase subject to q-deformed magnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the Berry phase of a spin system in a q-deformed magnetic field. The Berry phase depends on parameter q and which causes the deformation of the Berry phase. When q ≠ 1, the parameter space for the spin-half particles in magnetic field is deformed and immovable at the point of φ = 0, π/2, π. The same Hamiltonian can also be constructed by q-deformed Lie-algebra and magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov Y., Anandan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  2. Sjoqvist E., Pati A.K., Ekert A., Anandan J.S., Ericsson M., Oi D.K.L., Vedral V.: Geometric Phases for Mixed States in Interferometry. Phys. Rev. Lett. 85, 2845–2849 (2000)

    Article  ADS  Google Scholar 

  3. Samuel J., Bhandari R.: General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. Tong D.M., Sjoqvist E., Kwek L.C., Oh C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004)

    Article  ADS  Google Scholar 

  5. Wilczek F., Zee A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  6. Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A. 392, 45–57 (1984)

    Article  ADS  MATH  Google Scholar 

  7. Simon B.: Holonomy, the quantum adiabatic theorem, and Berry’s phase. Phys. Rev. Lett. 51, 2167–2170 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  8. Rohrlich, D.: Berry’s phase. arxiv. 0708.3749v1

  9. Born M., Oppenheimer J.R.: Zur quantentheorie der molekeln. Annalen der Physik 84, 457–484 (1927)

    Article  ADS  MATH  Google Scholar 

  10. Mead C.A., Truhlar D.G.: On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei. J. Chem. Phys. 70, 2284–2296 (1979)

    Article  ADS  Google Scholar 

  11. Delacretaz G. et al.: Fractional quantization of molecular pseudorotation in Na3. Phys. Rev. Lett. 56, 2598–2601 (1986)

    Article  ADS  Google Scholar 

  12. Harn F.S.: Berrys geometrical phase and the sequence of states in the Jahn–Teller effect. Phys. Rev. Lett. 58, 725–728 (1987)

    Article  ADS  Google Scholar 

  13. Bohm A., Mostafazadeh A., Koizumi H., Niu Q., Appelt J., Wakerle G., Mehring M.: Deviation from Berrys adiabatic geometric phase in a 131Xe nuclear gyroscope. Phys. Rev. Lett. 73, 3921–3924 (1994)

    Google Scholar 

  14. Duan L.M., Cirac J.I., Zoller P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)

    Article  ADS  Google Scholar 

  15. Sorensen A., Molmer K.: Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A. 62, 022311 (2000)

    Article  ADS  Google Scholar 

  16. Leibfried D., DeMarco B., Meyer V., Lucas D., Barrett M., Britton J., Itano W.M., Jelenkovic B., Langer C., Rosenband T., Wineland D.J.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature (London) 422, 412–415 (2003)

    Article  ADS  Google Scholar 

  17. Garcia-Ripoll J.J., Zoller P., Cirac J.I.: Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. Phys. Rev. Lett. 91, 157901 (2003)

    Article  ADS  Google Scholar 

  18. Staanum P., Drewsen M., Molmer K.: Geometric quantum gate for trapped ions based on optical dipole forces induced by Gaussian laser beams. Phys. Rev. A. 70, 052327 (2004)

    Article  ADS  Google Scholar 

  19. Recati A., Calarco T., Zanardi P., Cirac J.I., Zoller P.: Holonomic quantum computation with neutral atoms. Phys. Rev. A. 66, 032309 (2002)

    Article  ADS  Google Scholar 

  20. Unanyan R.G., Shore B.W., Bergmann K.: Laser-driven population transfer in four-level atoms: consequences of non- Abelian geometrical adiabatic phase factors. Phys. Rev. A. 59, 2910–2919 (1999)

    Article  ADS  Google Scholar 

  21. Sun C.P., Li Y., Liu X.F.: Quasi-spin-wave quantum memories with a dynamical symmetry. Phys. Rev. Lett. 91, 147903 (2003)

    Article  ADS  Google Scholar 

  22. Solinas P., Zanardi P., Zanghi N., Rossi F.: Semiconductor-based geometrical quantum gates. Phys. Rev. B. 67, 121307(R) (2003)

    Article  ADS  Google Scholar 

  23. Carvalho A.R.R., Hope J.J.: Stabilizing entanglement by quantum-jump-based feedback. Phys. Rev. A. 76, 010301(R) (2007)

    Article  MathSciNet  ADS  Google Scholar 

  24. Jimbo M.: Aq-difference analogue of U(g) and the Yang–Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Jimbo M.: A q-analogue of U(g(N+1)), Hecke algebra, and the Yang–Baxter equation. Lett. Math. Phys. 11, 247–252 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  26. Jimbo M.: Quantum R matrix for the generalized Toda system. Commun. Math. Phys. 102, 537–547 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Drinfeld, V.G.: Quantum groups. In: Proc. ICM, Berkeley, CA, MSRI, pp. 798–820 (1986)

  28. Macfarlane A.J.: Quantum groups, proceedings for the ICM, Berkeley. J. Phys. A. Math. Gen. 22, 4581–4588 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Zurong Yu: Some realization of the quantum algebra Uq(su(2)). J. Phys. A. Math. Gen. 24, L1321–L1325 (1991)

    Article  ADS  MATH  Google Scholar 

  30. Sun C.-P., Fu H.-C.: The q-deformed boson realisation of the quantum group SU(n)q and its representations. J. Phys. A. Math. Gen. 22, L983–L986 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Fu L.-B., Liu J.: Adiabatic Berry phase in an atom-molecule conversion system. Ann. Phys. 325, 2425–2434 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Kulish P.P., Reshetikhin N.Yu.: Quantum linear problem for the sine-Gordon equation and higher representations. J. Sov. Math. 23, 2435–2441 (1983)

    Article  Google Scholar 

  33. Drinfeld V.: Hopf algebras and the quantum Yang–Baxter equation. Sov. Math. Dokl. 32, 254–258 (1985)

    Google Scholar 

  34. Batchelor M.T., Yung C.M.: Q-deformations of quantum spin chains with exact valence-bond ground states. Int. J. Mod. Phys. B. 8, 3645–3654 (1994)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, G., Xue, K., Wang, G. et al. The Berry phase subject to q-deformed magnetic field. Quantum Inf Process 12, 815–824 (2013). https://doi.org/10.1007/s11128-012-0420-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0420-9

Keywords

Navigation