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Abstract An open quantum walk formalism for dissipative quantum comput-
ing is presented. The approach is illustrated with the examples of the Toffoli
gate and the Quantum Fourier Transform for 3 and 4 qubits. It is shown that
the algorithms based on the open quantum walk formalism are more efficient
than the canonical dissipative quantum computing approach. In particular,
the open quantum walks can be designed to converge faster to the desired
steady state and to increase the probability of detection of the outcome of the
computation.
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1 Introduction

The realistic description of any quantum system includes the unavoidable ef-
fect of the interaction with the environment [1]. Such open quantum systems
are characterized by the presence of dissipation and decoherence. For many
applications, the influence of both phenomena on the reduced systems needs
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to be eliminated or at least minimized. However, it was shown recently that
the interaction with the environment not only can create complex entangled
states [2,3,4,5,6,7], but also allows for universal quantum computation [8].

One of the well established approaches to formulate quantum algorithms
is the language of quantum walks [9,10]. Both, continuous and discrete-time
quantum walks can perform universal quantum computation [11,12]. Usually,
taking into account the decoherence and dissipation in a unitary quantum
walk reduces its applicability for quantum computation [13] (although, in very
small amounts decoherence has been found to be useful [14]).

Recently, a framework for discrete time open quantum walks on graphs was
proposed [15], which is based upon an exclusively dissipative dynamics. This
framework is inspired by a specific discrete time implementation of the Kraus
representation of CP-maps on graphs. In continuous time and more general
setting Whitfield et al. [16] introduced quantum stochastic walks to study
the transition from quantum walk to classical random walk. In this paper the
flexibility and the strength of the open quantum walk formalism [15] will be
demonstrated by implementing algorithms for dissipative quantum computing.
With the example of the Toffoli gate and the Quantum Fourier Transform with
3 and 4 qubits we will show that the open quantum walk implementation of
the corresponding algorithms outperforms the original dissipative quantum
computing model [8].

In section 2 we briefly summarize the formalism of open quantum walks. In
section 3 we review the dissipative quantum computing model and show how
to implement an arbitrary simple unitary gate as well as the Toffoli gate. In
section 4 with the help of the Quantum Fourier Transform for 3 and 4 qubits
we demonstrate that the open quantum walk approach to quantum computing
allows for the implementation of more involved quantum algorithms. In section
5 we conclude and present an outlook on future work.

2 General construction of Open Quantum Walks

Open Quantum Walks are defined on graphs with a finite or countable number
of vertices [15]. The dynamics of the walker will be described in the Hilbert
space given by the tensor product H⊗K. H denotes the Hilbert space of the
internal degrees of freedom of the walker. For example, in the case of a spin
1/2 walker the Hilbert space H is H = C2. The graph on which the walk is
performed is decribed by a set of vertices V . The Hilbert space K = C

V has
as many basis vectors, as number of vertices in V . For an infinite number of
vertices we consider K to be any separable Hilbert space with orthonormal
basis (|i〉)i∈V .

For each edge (i, j) of the graph we introduce a bounded operator Bi
j ∈

H which will play the role of a generalized quantum coin. The operator Bi
j

describes a transformation in the internal degree of freedom of the walker while
“jumping” from node j to node i. To ensure conservation of probability and
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positivity we enforce the condition,
∑

i

Bi†
j B

i
j = I. (1)

This condition guarantees that the local map Mj(ρ) defined at each vertex j,

Mj(ρ) =
∑

i

Bi
jρB

i†
j , (2)

is completely positive and trace preserving. The CP-map Mj is defined on
the Hilbert space H. In order to extend Mj to the Hilbert space of the total

system, i.e. H⊗K, we dilate the generalized quantum coin operation Bj
i with

the transition on the graph in the following way,M i
j = Bi

j⊗|i〉〈j|. It is easy to

see, that if the basis vectors |i〉 are orthonormal basis vectors then M i
j satisfies

the following condition,
∑

i,j

M i†
j M

i
j = I. (3)

The above equality allow us to define a trace preserving and CP- map M on
the Hilbert space of the total system H⊗K, as

M(ρ) =
∑

i,j

M i
jρM

i†
j . (4)

With this choice of operators M j
i the map M conserves the structure of the

density operators of the following form,

ρ =
∑

i

ρi ⊗ |i〉〈i|, (5)

with
∑

iTr(ρi) = 1. In fact, one sees immediately that,

M
(

∑

i

ρi ⊗ |i〉〈i|
)

=
∑

i





∑

j

Bi
jρjB

i†
j



⊗ |i〉〈i|. (6)

The map M acting on density matrices of the form ρ =
∑

i ρi ⊗ |i〉〈i| defines
the Open Quantum Walk.

One should understand that within this formulation of the Open Quantum
Walk the transition between nodes i and j of the graph are driven purely by the
dissipative interaction with a common bath between this two nodes. In this
sense the transitions between nodes are environment mediated. The direct
transition due to unitary evolution is prohibited. In a corresponding micro-
scopic system-environment model an appropriate total Hamiltonian guaranties
that during each step of the walk the “walker” interacts with the Markovian
environment common to the nodes involved in the step. The system-bath in-
teraction is engineered in such a way that during the transition from the node i
to the node j a quantum coin (Bj

i ) is applied to the internal degree of freedom
of the “walker”. From this point the transition operator from the node i to the
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Fig. 1 A schematic representation of an open quantum walk on a 2-node graph. The oper-
ators B

j
i
(i, j = 0, 1) represent the transition operators of the walk.

node j is proportional to Bj
i ⊗ |j〉〈i| so that the probability of the “walker”

to jump will depend on the state of the internal degree of freedom and the
interaction a with local Markovian environment. A full microscopic derivation
of an open quantum walk from a physical Hamiltonian of a total system is
beyond the scope of the present paper and will be presented elsewhere [17].

As an example of open quantum walk let us consider the simplest case of
a walk on a 2-node graph (see Fig. 1). In this case the transition operators Bj

i

(i, j = 0, 1) satisfy:

B0†
0 B

0
0 +B1†

0 B
1
0 = I, B1†

1 B
1
1 +B0†

1 B
0
1 = I. (7)

The state of the walker ρ[n] after n steps is given by,

ρ[n] = ρ
[n]
0 ⊗ |0〉〈0|+ ρ

[n]
1 ⊗ |1〉〈1|, (8)

where the particular form of the ρ
[n]
i (i = 0, 1) is found by recursion,

ρ
[n]
0 = B0

0ρ
[n−1]
0 B0†

0 +B0
1ρ

[n−1]
1 B0†

1 , (9)

ρ
[n]
1 = B1

0ρ
[n−1]
0 B1†

0 +B1
1ρ

[n−1]
1 B1†

1 .

3 Implementation of the arbitrary unitary operation and the

Toffoli gate

Recently, Verstraete et al. [8] suggested a dissipative model of quantum com-
puting, capable of performing universal quantum computation. The dissipative
quantum computing setup consists of a linear chain of time registers. Initially,
the system is in a time register labeled by 0. The result of the computation is
measured in the last time register labeled by T . Neighboring time registers are
coupled to local baths. When the system reaches its unique steady state the
result of the planned quantum computational task is the state of the time regis-
ter T . In particular, for a quantum circuit given by the set of unitary operators
{Ut}Tt=1 the final state of the system is given by |ψT 〉 = UTUT−1 . . . U2U1|ψ0〉.
To reach the final state |ψT 〉 one evolves the system with the help of the master
equation,

d

dt
ρ =

∑

k

LkρL
†
k −

1

2
{L†

kLk, ρ}+, (10)
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where jump operators Lk are given by Li = |0〉i〈1| ⊗ |0〉t〈0| and Lt = Ut ⊗
|t〉〈t+1|+U †

t ⊗ |t+1〉〈t|. Verstraete et al. [8] have shown that in this case the
total system converges to a unique steady state, namely,

ρ =
1

T + 1

∑

t

|ψt〉〈ψt| ⊗ |t〉〈t|. (11)

It is clear, that the probability of successful detection of the result of the
quantum computation |ψT 〉 is given by 1/(T + 1).

Using the formalism of open quantum walks one can perform dissipative
quantum computations with higher efficiency. In order to demonstrate this
fact we consider in the following the open quantum walk implementation of
the simple unitary operation and the Toffoli gate.

We start by showing how to implement a simple gate given by the unitary
operator U . To achieve this it is sufficient to consider a 2-node graph (see
Fig. 1). By choosing the following form of transition operators, B0

0 =
√
λI,

B1
1 =

√
ωI, B1

0 =
√
ωU and B0

1 =
√
λU † the OQW shown in Fig. 1 will

implement the single gate U . If the initial state of the system |ψ0〉 is prepared
in the node 0, then after performing the open quantum walk the system reaches
the steady state ρSS = λ|ψ0〉〈ψ0|⊗|0〉〈0|+ωU |ψ0〉〈ψ0|U †⊗|1〉〈1|. The positive
constants ω and λ satisfy λ+ω = 1. The result of the gate application can be
detected in node 1 with probability ω.

The physical meaning of the parameters ω and λ can be understood from
the underlying microscopic model of the system [17]. For a “walker” coupled
to bosonic Markovian baths we expect the parameters ω and λ to scale linearly
with the mean number n of thermal bosons (photon or phonons) corresponding
to the frequency of transition in the common environment which mediates
transitions between nodes,

ω ∼ γ(n+ 1) andλ ∼ γn, (12)

where γ is a coefficient of the spontaneous emission. From this point of view
the steady state of the “walker” on the 2 node graph will always have the form
(see Eq. (8)),

ρSS = ρ
[0]
SS ⊗ |0〉〈0|+ ρ

[1]
SS ⊗ |1〉〈1|. (13)

If one takes B1
i ∼ √

ω and B0
i ∼

√
λ for i = (0, 1), then Tr[ρ

[0]
SS ] ∼ n and

Tr[ρ
[1]
SS ] ∼ (n + 1). It is clear that there are two limiting cases, first ω = λ in

the very high temperature limit (TBath = ∞) and second ω = 1, λ = 0 in the
zero temperature case (TBath = 0).

Next we analyze the OQW implementation of the Toffoli gate [18]. Us-
ing single qubits and CNOT-gates the Toffoli gate can be realized in a cir-
cuit shown in Fig. 2a. The single qubits gates S, T , X and H are given by
S = |0〉〈0| + eiπ/2|1〉〈1|, T = |0〉〈0| + eiπ/4|1〉〈1|, X = |0〉〈1| + |1〉〈0| and the
Hadamard gate H = (|0〉〈0| − |1〉〈1|+X) /

√
2. To implement the Toffoli gate

we need to implement 13 unitary operators. In the language of dissipative
quantum computing this means that we need 13 + 1 time-registers (T = 13).
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Fig. 2 Quantum circuit, corresponding open quantum walk diagram and efficiency of the
Toffoli gate. Fig. 2a depicts the circuit implementation of the Toffoli gate. The corresponding
open quantum walk diagram is shown in Fig. 2b. Fig. 2c shows the dynamics of the detection
probability in the final node 13 as function of the number of steps of the OQW. Curves (c1)
to (c4) correspond to different values of the parameter ω = 0.5, 0.6, 0.8, 0.9, respectively.
Fig. 2d shows the number of steps needed to reach the steady state (squares) and the
probability of detection of the successful implementation of the gate (circles) as function
of the parameter ω. The number of steps to reach a steady states is simulated with 10−7

accuracy.

The corresponding open quantum walk scheme is shown in Fig 2b. In this case
each node of the graph corresponds to a 3-qubit Hilbert space and each step
of the walk corresponds to a transition of all three qubits. The set of unitary
operators U1, U2, ..., U13 corresponds to unitaries in the circuit. For example,
the unitary operator U6 is given by

U6 = I2 ⊗ |0〉〈0| ⊗ I2 + I2 ⊗ |1〉〈1| ⊗X. (14)

In the Figs. 2c and 2d we analyze the efficiency of the OQW implementation
of the Toffoli gate as a function of the parameter of the walk, i.e., ω. Fig. 2c
shows the dependence of the detection probability in the last node labeled by
13 as function of the number of steps of the open quantum walk for different
values of the parameter ω. Curve (1) of Fig. 2c corresponds to ω = 0.5, which
is the efficiency of the conventional dissipative quantum computing scheme.
The formalism of open quantum walks allows to choose other values for ω.
In particular, for higher values of ω = 0.6, 0.8, 0.9, the open quantum walk
shows a higher efficiency of computation. Fig. 2d analyzes the number of steps
needed to reach the steady state and the probability of detection of the result
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of the computation in the steady state as a function of the parameter ω. From
Fig. 2d it is clear that the number of steps needed to reach a steady state
decreases with increasing parameter ω.

The above result has a straightforward interpretation from the open quan-
tum system dynamics point of view. Obviously, the ground state of the total
system “walker+network” is the pure state |ψG〉 = U13U12 . . . U2U1|ψ0〉⊗ |13〉,
where |ψ0〉 is the 3-qubit input state of the Toffoli gate and |13〉 labels the 13th
node of the graph in Fig. 2b. The steady state of the open walk converges to
this pure state only in the case of ω = 1 and λ = 0 which corresponds to
zero temperature of all local environments. In all other cases the steady state
will be given by the density matrix ρSS =

∑13
i=0 pi|ψi〉〈ψi| ⊗ |i〉〈i|, where

|ψi〉 = UiUi−1 . . . U1|ψ0〉. In the case when ω = λ = 1/2, which corresponds to
the conventional DQC scheme, all probabilities pi = 1/(T +1), where T = 13.
The probability to find the ”walker” in the ground state increases with de-
creasing temperatures of the local environments, which in turn corresponds
to increasing the parameter ω. In the explicit implementation of the quantum
algorithm the parameter ω determines the probability of forward propagation.
In a similar way it is also obvious from Fig. 2d that with increasing parameter
ω the probability of detection of the result of the computation in node 13
increases.

4 Three and four qubit quantum Fourier transform

The Quantum Fourier Transform (QFT) plays an important role in quantum
computing and it is an essential part of many quantum algorithms [18]. In
this section we analyze the efficiency of the OQW implementation of QFT for
the example of three and four qubits. The QFT is implemented throughout
a sequence of Hadamard operations, phase gates and swap-gates. The swap
gates can be implemented as a sequence of three CNOT-gates for each pair of
qubits. The quantum circuits for three and four qubits QFT are shown in Figs.
3a and 4a, respectively. The single qubit phase gate R from Fig 4a is given by
R = |0〉〈0|+ eiπ/8|1〉〈1|. The corresponding open quantum walk diagram for a
3 qubit QFT is depicted in Fig. 3b. In the case of a 4 qubit QFT the diagram
will be similar, but there will be 16 nodes. Figs. 3c and 4b show the dependence
of the probability of successful performance of the QFT as a function of the
number of steps of the walk. Curves (1)-(4) in both Figs. 3c and 4b correspond
to different values of the parameter ω = 0.5, 0.6, 0.8, 0.9, respectively. As in the
case of the Toffoli gate, curve (1) corresponds to the case ω = 0.5 which is the
conventional dissipative quantum computing model. In the Figs. 3d and 4c we
analyze the necessary number of steps to reach the steady state and the success
probability of measurement as a function of the parameter ω. Similarly to the
Toffoli gate implementation we observe that with increasing ω the number of
steps to reach the steady state is decreasing and the probability of successful
detection is increasing. Again, this is strong evidence that the open quantum
walk approach to dissipative quantum computing is a promising one.
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Fig. 3 Quantum circuit, corresponding open quantum walk diagram and efficiency of the
3-qubit QFT. Fig. 3a depicts the circuit implementation of the 3-qubit QFT. The corre-
sponding open quantum walk diagram is shown in Fig. 3b. Fig. 3c shows the dynamics of
the detection probability in the final node 9 as function of the number of steps of the OQW.
Curves (c1) to (c4) correspond to different values of the parameter ω = 0.5, 0.6, 0.8, 0.9,
respectively. Fig. 3d shows the number of steps needed to reach the steady state (squares)
and the probability of detection of the successful implementation of the quantum algorithm
(circles) as function of the parameter ω. The number of steps to reach a steady states is
simulated with 10−7 accuracy.

5 Conclusion

After briefly reviewing the formalism of open quantum walks on graphs and
of dissipative quantum computing we have demonstrated the potential of the
OQW approach for dissipative quantum computing. With the help of the Tof-
foli gate and the QFT we have shown that the open quantum walk approach
outperforms the original dissipative quantum computing model [8]. By in-
creasing the probability of forward propagation in the “time registers” in the
transition operators of the open quantum walk we can increase the probabil-
ity of the successful computation result detection and decrease the number of
steps of the walk which is required to reach the steady state.

In future we plan to apply the open quantum walk formalism to the devel-
opment of new quantum algorithms. Inspired by the successful application of
unitary quantum walks to quantum search algorithms, we expect dissipative
quantum search algorithms based on open quantum walks to be an interesting
alternative. Of course, the crucial milestones for the universal usage of open
quantum walks for dissipative quantum computing, will be the demonstra-
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Fig. 4 Quantum circuit and efficiency of the 4-qubit QFT. Fig. 4a depicts the circuit
implementation of the 4-qubit QFT. The corresponding open quantum walk diagram is
analogous to the 3-qubit QFT (see Fig. 3b) but contains not 10 but 16 nodes. Fig. 4b shows
the dynamics of the detection probability in the final node 15 as function of the number
of steps of the OQW. Curves (b1) to (b4) correspond to different values of the parameter
ω = 0.5, 0.6, 0.8, 0.9, respectively. Fig. 4c shows the number of steps needed to reach the
steady state (squares) and the probability of detection of the successful implementation of
the quantum algorithm (circles) as function of the parameter ω. The number of steps to
reach a steady states is simulated with 10−5 accuracy.

tion of a physical realization procedure. The current formulation of OQWs is
Markovian by design. A microscopic derivation of OQWs will assume a weak
coupling of the system to the environment, so that we still can apply the stan-
dard Born-Markov approximation. Also, it will be interesting to generalize
this approach to non-Markovian OQW and see if this increases further the ef-
ficiency of the implementation of dissipative quantum computing algorithms.
Work along these lines is in progress.
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