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We present a high-efficiency multipartite entanglement purification protocol (MEPP) for
electron-spin systems in a Greenberger-Horne-Zeilinger state based on their spins and their charges.
Our MEPP contains two parts. The first part is our normal MEPP with which the parties can
obtain a high-fidelity N-electron ensemble directly, similar to the MEPP with controlled-not
gates. The second one is our recycling MEPP with entanglement link from N ′-electron subsystems
(2 < N ′ < N). It is interesting to show that the N ′-electron subsystems can be obtained efficiently
by measuring the electrons with potential bit-flip errors from the instances which are useless and
are just discarded in all existing conventional MEPPs. Combining these two parts, our MEPP has
the advantage of the efficiency higher than other MEPPs largely for electron-spin systems.
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I. INTRODUCTION

Entanglement has been regarded as the essential resource for quantum information processing and quantum com-
munication [1]. From a perspective of applications, the entangled systems shared by the separated parties in distant
locations are required to be in a maximally entangled state for the efficiency and the security of quantum commu-
nication [2–7]. Especially, multipartite entangled systems have many vital applications in quantum computation [1]
and quantum communication, such as controlled teleportation [8, 9], quantum state sharing [10–12], quantum secret
sharing [13–15], and so on. However, all these tasks are based on the fact that the quantum channel with multipartite
entangled states shared by the legitimate distant participants has been set up beforehand. It is well known that the
parties in quantum communication cannot create nonlocal entanglement with local operations and classical communi-
cation (LOCC). The distribution of entanglement created locally is inevitable. However, in a practical transmission,
the particles propagated away from each other are destined to suffer from channel noises, which will degrade the
entanglement or even make the maximally entangled state become a mixed one. Therefore, it will decrease the fidelity
of quantum teleportation [5] and quantum dense coding [6, 7], and make the quantum communication insecure [2–4].
Recently, much attention has been drawn to entanglement purification [16–30], a fascinating tool for the parties

in quantum communication to extract some high-fidelity entangled states from a set of less entangled systems. The
original entanglement purification protocol (EPP) by Bennett et al. [16] and that by Deutch et al. [17] are expressed in
terms of the quantum controlled-not (CNOT) logic operations. Subsequently, Pan et al. [18] introduced an EPP with
linear optical elements based on the polarization degree of freedom of photons. In 2002, Simon and Pan [19] presented
an EPP with a currently available parametric down-conversion (PDC) source. In 2008, Sheng et al. [20] proposed an
efficient EPP based on a PDC source with cross-Kerr nonlinearity and it can, in principle, be repeated to obtain a
high-fidelity entangled ensemble. In 2011, Wang, Zhang, and Jin [21] proposed an interesting EPP based on cross-Kerr
nonlinearity and the measurement on the intensity of coherent beams. In 2010, Sheng and Deng [27] introduced the
concept of deterministic entanglement purification and proposed a two-step deterministic entanglement purification
protocol (DEPP), the first DEPP in which the parties can obtain a maximally entangled state from each system
transmitted, far different from the conventional entanglement purification protocols (CEPPs) [16–26]. Subsequently,
a one-step DEPP [28–30] was proposed, only resorting to the spatial entanglement or the frequency entanglement
of a practical PDC source and linear optical elements. In essence, both the CEPPs [16–26] and the DEPPs [27–30]
are based on entanglement transfer. Taking the EPP for photon systems as an example, the CEPPs are based on
the entanglement transfer between different entangled photon systems, while the DEPPs are based on the transfer
between different degrees of freedom of the entangled photon system itself. The DEPPs require that at least one
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degree of freedom of photons is stable when the photons are transmitted over a noisy channel, while the CEPPs only
require that there is entanglement in the ensemble after transmission.
Up to now, most of EPPs [16–20, 27, 28] are focused on bipartite entangled photon systems and there are only

several multipartite entanglement purification protocols, including high-dimension EPPs [22–26]. For instance, in 1998,
Murao et al. [22] proposed the first multipartite entanglement purification protocol (MEPP) to purify multipartite
entangled systems in a Werner-type state, with CNOT gates. In 2007, this protocol was extended to high-dimensional
multipartite quantum systems by Cheong et al. [24], resorting to some generalized XOR gates, instead of the common
CNOT gates. In 2009, with the considerable experimental progress achieved, Sheng et al. introduced a feasible MEPP
for N -photon systems in a Greenberger-Horne-Zeilinger (GHZ) state [25]. In their protocol, quantum nondemolition
detector (QND) is exploited to fulfill the functions of the parity-check gate. With QNDs, the parties can obtain some
high-fidelity GHZ-state systems from the less entangled ones by performing the protocol iteratively.
A conduction electron can act as a qubit in both the charge degree of freedom and the spin degree of freedom,

which are relatively independent on each other. In other words, when we measure the charge of an electron system,
its spin state would be kept unaffected, and vice versa. Owing to this fantastic feature, charge detection [31] has been
exploited to accomplish many works, such as the CONT gate between electronic qubits [32], the generation of the
entangled spins [33], the multipartite entanglement analyzer [34], and so on. Also, some EPPs and an entanglement
concentration protocol for electron systems have been proposed [35–38]. For example, in 2005, Feng et al. [35]
proposed an electronic EPP for purifying two-electron systems in a Werner state with parity-check measurements
based on charge detection [32], following some ideas in the original EPP proposed by Bennett et al. [16] for photon
pairs. In 2011, Sheng et al. [36] presented a MEPP for electron-spin states and Wang et al. [37] proposed a
two-electron EPP by using quantum-dot spins in optical microcavities. Although there are some MEPPs and some
two-electron EPPs, the efficiency in these protocols is relatively low.
In this work, we present a high-efficiency MEPP for electron-spin systems in a GHZ state with charge detection.

It contains two parts. One is our normal MEPP with which the parties in quantum communication can distill a
high-fidelity N -electron ensemble directly, by replacing perfect CNOT gates with the parity- check detectors based on
charge detection in Ref. [22], but with a higher efficiency. The other is our recycling MEPP in which the entanglement
link based on charge detection is used to produce some N -electron entangled systems from entangled N ′-electron
subsystems (2 ≤ N ′ < N). It is interesting to show that the entangled N ′-electron subsystems can be obtained
efficiently from the cross-combination items, which are useless and are just discarded in all existing conventional
EPPs [16–25, 35–37]. With these two parts, the present MEPP for electron-spin states has efficiency higher than all
other MEPPs largely. We discuss the detail of our high-yield MEPP for electron-spin states of three-electron systems
and its principle is suitable to the N -electron systems in an arbitrary GHZ state.

II. HIGH-EFFICIENCY THREE-ELECTRON ENTANGLEMENT PURIFICATION FOR BIT-FLIP

ERRORS WITH ENTANGLEMENT LINK AND CHARGE DETECTION

Our thee-electron EPP contains two parts, which makes it different from others [16–25, 35–37]. One is our normal
MEPP with which the parties can obtain a high-fidelity three-electron ensemble directly, similar to all existing MEPPs.
The other is our recycling MEPP with entanglement link from subsystems. In the second part, the quantum resources
are obtained from the systems with less entanglement which are just discarded in all other MEPPs. We introduce the
principles of these two parts independently as follows.

A. Normal three-electron entanglement purification for bit-flip errors

Before we start to explain the principle of our MEPP, we present a detailed description of a parity-check detector
(PCD) which is thought to be more feasible as a basic element for EPP than a perfect CNOT gate. In Fig.1, the
polarizing beam splitter (PBS) transmits the electrons in the spin-up state | ↑〉 and reflects the ones in the spin-down
state | ↓〉. Therefore, for two electrons coming from two different inputs of the first PBS, if they leave through
different outputs of the first PBS, the charge detector (C) will get the charge occupation number C = 1; otherwise
C = 0 or 2. The charge detector can distinguish the occupation number one from the occupation numbers 0 and 2,
but it cannot distinguish the case between 0 and 2. In other words, it can only distinguish the instances that the
occupation number is even or odd [32]. With this feature, one can see that the states | ↑↑〉 and | ↓↓〉 will lead the
charge detector to obtain the charge occupation number C = 1 as the two electrons passing through the first PBS
will leave through different modes. However, the states | ↑↓〉 and | ↓↑〉 will lead the charge detector to be C = 0 and
C = 2, respectively. As mentioned above, the charge detector cannot distinguish 0 and 2, and it will show the same
result, i.e., C = 0 for simplicity. That is, we can distinguish the states | ↑↑〉 and | ↓↓〉 from | ↑↓〉 and | ↓↑〉, according
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to the different outcomes of the charge detector. The second PBS is used to split the two electrons passing through
the charge detector, without destroying their spin states. In essence, the setup shown in Fig.1 is just a parity-check
detector (PCD) for the spins of two electrons.

M

PBS PBS

C

a2a1

b1 b2

M

FIG. 1: The principle of a parity-check detector (PCD) based on charge detection. PBS represents a polarizing beam splitter
for electron spins, which transmits the electron in the spin-up state | ↑〉 and reflects the electron in the spin-down state | ↓〉,
respectively. M represents a mirror for the spins of an electron. C represents a charge detector and it can distinguish the
electron number C = 1 from C = 0.

For a three-electron spin system, there are eight GHZ states,

|Φ±
0 〉ABC =

1√
2
(| ↑↑↑〉 ± | ↓↓↓〉)ABC ,

|Φ±
1 〉ABC =

1√
2
(| ↓↑↑〉 ± | ↑↓↓〉)ABC ,

|Φ±
2 〉ABC =

1√
2
(| ↑↓↑〉 ± | ↓↑↓〉)ABC ,

|Φ±
3 〉ABC =

1√
2
(| ↑↑↓〉 ± | ↓↓↑〉)ABC . (1)

Here the subscripts A, B, and C represent the three electrons belonging to the three parties, say Alice, Bob, and
Charlie, respectively. Suppose that the original GHZ state transmitted is |Φ+

0 〉ABC . As we know, the noisy channel
will inevitably degrade the entanglement of the state or even make it be a mixed one. In detail, if the initial state
|Φ+

0 〉ABC becomes |Φ+
i 〉ABC , a bit-flip error takes place on the i-th qubit (i = 1, 2, 3). If the state |Φ+

0 〉ABC evolves
to |Φ−

0 〉ABC , we say that a phase-flip error appears. Sometimes, both a bit-flip error and a phase-flip error will take
place on the three-electron system such as the state |Φ−

i 〉ABC . In order to purify three-electron entangled systems,
we are required to correct both bit-flip errors and phase-flip errors on the quantum system. Usually, an EPP can be
divided into two steps [18, 20, 36]. One is used to purify the bit-flip error and the other is to the phase-flip error. In
the second step, the phase-flip error will be transformed into the bit-flip error with a Hadamard operation on each
qubit and then the parties purify the bit-flip error with the similar processes to these in the first step. That is, the
phase-flip error can, in principle, be purified with the similar processes [18]. We only discuss the principle of the
present MEPP for three-electron systems with bit-flip errors below.
Suppose the state of the tripartite electronic systems ρ shared by Alice, Bob, and Charlie is

ρABC = F0|Φ+
0 〉〈Φ+

0 |+ F1|Φ+
1 〉〈Φ+

1 |+ F2|Φ+
2 〉〈Φ+

2 |+ F3|Φ+
3 〉〈Φ+

3 |. (2)

Here F0 is the fidelity of the state |Φ+
0 〉 after it is transmitted over a noisy channel. Fi (i = 1, 2, 3) is the probability

that the three-electron system is in the state |Φ+
i 〉. They satisfy the relation

F0 + F1 + F2 + F3 = 1. (3)

For obtaining some high-fidelity three-electron entangled systems, the three parties should operate a pair of three-
electron systems in the state ρ with LOCC. The principle of our normal three-electron EPP is shown in Fig.2. We
label the two three-electron systems with A1B1C1 and A2B2C2, respectively. The state of the six-electron system
A1B1C1A2B2C2 is ρA1B1C1

⊗ ρA2B2C2
. It can be viewed as the mixture of the 16 pure states, i.e., |Φ+

i 〉 ⊗ |Φ+
j 〉 with

the probability of FiFj (i, j = 0, 1, 2, 3). The three parties make the electron pair they own pass through their PCDs.
That is, the electron A1 entrances the up spatial mode and A2 the down-spatial mode, for comparing the spin parity
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FIG. 2: The principle of our normal three-electron EPP with PCDs based on charge detection. PCD represents a parity-check
detector. H represents a Hadamard operation. DA, DB , and DC represent the single-electron measurements with the basis
Z = {| ↑〉, | ↓〉} done by Alice, Bob, and Charlie, respectively.

of their electron pair. After the parity-check measurements, Alice, Bob, and Charlie communicate their outcomes,
and they keep the instances in which all the three parties obtain an even parity or an odd parity.
When the parities of the electron pairs obtained by Alice, Bob, and Charlie are all even, the state of the complicated

system composed of the six electrons A1B1C1A2B2C2 becomes a mixed one ρteven (without normalization),

ρteven =
1

2
(F 2

0 |φ0〉〈φ0|+ F 2
1 |φ1〉〈φ1|+ F 2

2 |φ2〉〈φ2|+ F 2
3 |φ3〉〈φ3|). (4)

where

|φ0〉 =
1√
2
(| ↑↑↑〉A1B1C1

| ↑↑↑〉A2B2C2
+ | ↓↓↓〉A1B1C1

| ↓↓↓〉A2B2C2
), (5)

|φ1〉 =
1√
2
(| ↓↑↑〉A1B1C1

| ↓↑↑〉A2B2C2
+ | ↑↓↓〉A1B1C1

| ↑↓↓〉A2B2C2
, (6)

|φ2〉 =
1√
2
(| ↑↓↑〉A1B1C1

| ↑↓↑〉A2B2C2
+ | ↓↑↓〉A1B1C1

| ↓↑↓〉A2B2C2
, (7)

|φ3〉 =
1√
2
(| ↑↑↓〉A1B1C1

| ↑↑↓〉A2B2C2
+ | ↓↓↑〉A1B1C1

| ↓↓↑〉A2B2C2
. (8)

When the parties all get the odd parity, the state should be ρtodd (without normalization),

ρtodd =
1

2
(F 2

0 |ψ0〉〈ψ0|+ F 2
1 |ψ1〉〈ψ1|+ F 2

2 |ψ2〉〈ψ2|+ F 2
3 |ψ3〉〈ψ3|). (9)

where

|ψ0〉 =
1√
2
(| ↑↑↑〉A1B1C1

| ↓↓↓〉A2B2C2
+ | ↓↓↓〉A1B1C1

| ↑↑↑〉A2B2C2
, (10)

|ψ1〉 =
1√
2
(| ↓↑↑〉A1B1C1

| ↑↓↓〉A2B2C2
+ | ↑↓↓〉A1B1C1

| ↓↑↑〉A2B2C2
, (11)
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|ψ2〉 =
1√
2
(↑↓↑〉A1B1C1

| ↓↑↓〉A2B2C2
+ | ↓↑↓〉A1B1C1

| ↑↓↑〉A2B2C2
, (12)

|ψ3〉 =
1√
2
(| ↑↑↓〉A1B1C1

| ↓↓↑〉A2B2C2
+ | ↓↓↑〉A1B1C1

| ↑↑↓〉A2B2C2
. (13)

It is obvious that Alice, Bob, and Charlie obtain the same outcomes as the case in which they all obtain an even
parity, after they perform a bit-flip operation on each of the three electrons A2B2C2. That is, they can obtain the
result that the complicated system composed of the six electrons A1B1C1A2B2C2 is in a mixture state ρ′teven (without
normalization)

ρ′teven = F 2
0 |φ0〉〈φ0|+ F 2

1 |φ1〉〈φ1|+ F 2
2 |φ2〉〈φ2|+ F 2

3 |φ3〉〈φ3|. (14)

We need only discuss the case that the system is in the states |φi〉 with the probabilities F 2
i below.

In the three down-spatial modes, a Hadamard (H) operation is performed on each of the electrons A2, B2, and C2,
which will lead to the transformation

| ↑〉 → 1√
2
(| ↑〉+ | ↓〉), | ↓〉 → 1√

2
(| ↑〉 − | ↓〉). (15)

That is, the states |φi〉 and |ψj〉 (i, j = 0, 1, 2, 3) will be changed into some other states. Alice, Bob, and Charlie
measure the spin states of the down-spatial modes A2B2C2. It is not difficult to find that the outcomes can be
divided into two groups, by considering the number of the spin-down electrons N↓. In the first case where N↓
is even, that is, if they obtain the outcomes of measurements on their electrons through the down-spatial modes
| ↑↑↑〉A2B2C2

, | ↓↓↑〉A2B2C2
, | ↑↓↓〉A2B2C2

or | ↓↑↓〉A2B2C2
, Alice, Bob, and Charlie will get the three-electron GHZ

states |Φ+
0 〉 = 1√

2
(| ↑↑↑〉 + | ↓↓↓〉)A1B1C1

, |Φ+
1 〉 = 1√

2
(| ↓↑↑〉 + | ↑↓↓〉)A1B1C1

, |Φ+
2 〉 = 1√

2
(| ↑↓↑〉 + | ↓↑↓〉)A1B1C1

, or

|Φ+
3 〉 = 1√

2
(| ↑↑↓〉+ | ↓↓↑〉)A1B1C1

with the probabilities of 1
2F

2
0 ,

1
2F

2
1 ,

1
2F

2
2 , or

1
2F

2
3 , respectively. In the other case

where N↓ is odd, that is, if they obtain the outcomes | ↑↑↓〉A2B2C2
, | ↑↓↑〉A2B2C2

, | ↓↑↑〉A2B2C2
or | ↓↓↓〉A2B2C2

, they
will get the other three-electron GHZ states |Φ−

0 〉 = 1√
2
(| ↑↑↑〉 − | ↓↓↓〉)A1B1C1

, |Φ−
1 〉 = 1√

2
(| ↓↑↑〉 − | ↑↓↓〉)A1B1C1

,

|Φ−
2 〉 = 1√

2
(| ↑↓↑〉 − | ↓↑↓〉)A1B1C1

, or |Φ−
3 〉 = 1√

2
(| ↑↑↓〉 − | ↓↓↑〉)A1B1C1

with the probabilities of 1
2F

2
0 ,

1
2F

2
1 ,

1
2F

2
2 ,

or 1
2F

2
3 , respectively. For the second case, in order to obtain the GHZ state without phase-flip errors, the three

participants should flip the relative phase of their electron system A1B1C1. For simplicity, here we transform the
state ρtodd into ρteven . In fact, we can easily demonstrate that the conclusion is also suitable for ρtodd . In other words,
the transformation is unnecessary.
Up to now, by keeping the instances in which all the parties obtain the same parity, and then measuring the electron

spins from the down-spatial modes after the H operations, the quantum state of the three-electron system A1B1C1

becomes ρ′. Here

ρ′ = F
′

0|Φ+
0 〉〈Φ+

0 |+ F
′

1|Φ+
1 〉〈Φ+

1 |+ F
′

2|Φ+
2 〉〈Φ+

2 |+ F
′

3|Φ+
3 〉〈Φ+

3 |. (16)

where

F
′

0 =
F 2
0

F 2
0 + F 2

1 + F 2
2 + (1− F0 − F1 − F2)2

,

F
′

1 =
F 2
1

F 2
0 + F 2

1 + F 2
2 + (1− F0 − F1 − F2)2

,

F
′

2 =
F 2
2

F 2
0 + F 2

1 + F 2
2 + (1− F0 − F1 − F2)2

,

F
′

3 =
(1− F0 − F1 − F2)

2

F 2
0 + F 2

1 + F 2
2 + (1− F0 − F1 − F2)2

. (17)

The fidelity of the new ensemble F
′

0 > F0 when the initial fidelity F0 satisfies the relation

F0 >
1

4

{

3− 2F1 − 2F2 −
√

1 + 4(F1 + F2)− 12(F 2
1 + F 2

2 )− 8F1F2

}

.

(18)



6

For more distinct, we take the case F1 = F2 = F3 (a symmetric noise model) as an example, and find that the fidelity
of the state |Φ+

0 〉 will be improved by our normal MEPP just when F0 >
1
4 . That is, the initial fidelity before EPP is

required to be F0 >
1
4 , not the case in other MEPPs [22–25, 36] in which it is required to be F0 >

1
2 .

We have fully discussed our normal MEPP for general bit-flip errors in three-electron systems. We use the PCDs
based on charge detection, instead of the perfect CNOT gates [22], to fulfill the purification of bit-flip errors. Moreover,
we give a general form for the purification of bit-flip errors in three-electron systems, not a Werner-type state [22] or
a simplified mixed entangled state [36], which makes our normal MEPP have a higher efficiency than others [22, 36].
Especially, it doubles the efficiency of the MEPP for three-electron systems in Ref.[36] as the three parties not only
consider the case in which they all obtain an even parity but also the case they all obtain an odd parity.

B. Recycling three-electron entanglement purification for bit-flip errors from subsystems

In our normal three-electron EPP for bit-flip errors, the three parties do not take the cross-combination items
|Φ+

i 〉A1B1C1
⊗ |Φ+

j 〉A2B2C2
(i 6= j ∈ {0, 1, 2, 3}) into account for obtaining high-fidelity three-electron systems because

they obtain different parities. This is just the flaw in all existing CEPPs [16–25, 35–37]. For these cross-combination
items, when the three participants perform some operations on their electrons A2, B2 and C2, respectively, they
cannot determine the state of the remaining three electrons A1B1C1 from the up-spatial modes because the item
|Φ+

j 〉A1B1C1
⊗ |Φ+

i 〉A2B2C2
has the same probability FiFj as the item |Φ+

i 〉A1B1C1
⊗ |Φ+

j 〉A2B2C2
(i 6= j ∈ {0, 1, 2, 3}).

That is, Alice, Bob, and Charlie will obtain the state |Φ+
i 〉A1B1C1

and |Φ+
j 〉A1B1C1

with the same probability. These

instances will decrease the fidelity of the state |Φ+
0 〉A1B1C1

in the three-electron systems kept. This is just the reason
that all existing CEPPs discard the cross-combination items. However, we cannot come to a simple conclusion that
the cross-combination items are useless, because they can be used to distill some high-fidelity two-electron entangled
states. With a set of high-fidelity two-electron entangled subsystems, Alice, Bob, and Charlie can produce a subset of
high-fidelity three-electron entangled systems with entanglement link based on charge detection, which is far different
from the existing CEPPs [16–25, 35–37], including the MEPPs. We call this part of our MEPP the recycling MEPP.
Our recycling MEPP will increase the efficiency and the yield of our three-electron MEPP largely, especially in the
case that the original fidelity of the state |Φ+

0 〉ABC is not large.
In detail, our recycling EPP for three-electron systems includes three steps. One is to distill a set of high-fidelity

entangled two-electron systems from the cross-combination items |Φ+
i 〉A1B1C1

⊗ |Φ+
j 〉A2B2C2

(i 6= j ∈ {0, 1, 2, 3}). The
second step is to improve the fidelity of subsystems with a two-electron EPP. The third step is to produce entangled
three-electron systems from subspaces with entanglement link based on a PCD.

1. Two-electron entanglement distillation from the cross-combination items of three-electron systems

We take the two cross-combination items |ϕ〉1 = |Φ+
0 〉A1B1C1

⊗ |Φ+
1 〉A2B2C2

and |ϕ〉2 = |Φ+
1 〉A1B1C1

⊗ |Φ+
0 〉A2B2C2

as an example to demonstrate the principle of our two-electron entanglement distillation from three-electron systems
with bit-flip errors. As for the other cross-combination items, we could deal with them in the same way with or without
a little modification. It is interesting to point out that whether the cross-combination items is |ϕ〉1 or |ϕ〉2, the three
parties will obtain the maximally entangled two-electron state |φ+〉B1C1

≡ 1√
2
(| ↑↑〉 + | ↓↓〉)B1C1

, by measuring the

electron spins with potential errors.
To write the states |ϕ〉1 and |ϕ〉2 in a detail way, they can be described as

|ϕ〉1 =
1

2
(| ↑↑↑〉A1B1C1

| ↑↓↓〉A2B2C2
+ | ↓↓↓〉A1B1C1

| ↓↑↑〉A2B2C2

+ | ↑↑↑〉A1B1C1
| ↓↑↑〉A2B2C2

+ | ↓↓↓〉A1B1C1
| ↑↓↓〉A2B2C2

), (19)

|ϕ〉2 =
1

2
(| ↑↓↓〉A1B1C1

| ↑↑↑〉A2B2C2
+ | ↓↑↑〉A1B1C1

| ↓↓↓〉A2B2C2

+ | ↓↑↑〉A1B1C1
| ↑↑↑〉A2B2C2

+ | ↑↓↓〉A1B1C1
| ↓↓↓〉A2B2C2

). (20)

One can see that if the outcomes of parity-check measurements done by Alice, Bob and Charlie are even, odd, and
odd, respectively, the six-electron system is in the state

|ζ〉1 ≡ 1√
2
(| ↑↑↑〉A1B1C1

| ↑↓↓〉A2B2C2
+ | ↓↓↓〉A1B1C1

| ↓↑↑〉A2B2C2
) (21)
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which comes from the state |ϕ〉1, or

|ζ〉2 ≡ 1√
2
(| ↑↓↓〉A1B1C1

| ↑↑↑〉A2B2C2
+ | ↓↑↑〉A1B1C1

| ↓↓↓〉A2B2C2
) (22)

from |ϕ〉2 with the same probability of 1
2F0F1. If the outcomes are odd, even, and even, the whole state of the system

is

|ζ〉3 ≡ 1√
2
(| ↑↑↑〉A1B1C1

| ↓↑↑〉A2B2C2
+ | ↓↓↓〉A1B1C1

| ↑↓↓〉A2B2C2
) (23)

from |ϕ〉1, or

|ζ〉4 ≡ 1√
2
(| ↓↑↑〉A1B1C1

| ↑↑↑〉A2B2C2
+ | ↑↓↓〉A1B1C1

| ↓↓↓〉A2B2C2
) (24)

from |ϕ〉2 with the same probability of 1
2F0F1 too. With an H operation on each of the four electrons A1, A2, B2,

and C2, the state |ζ〉1 will be transformed into

|ζ〉H1 =
1

2
{(| ↑↑〉+ | ↓↓〉)B1C1

(| ↑↑↑↑〉+ | ↓↓↑↑〉+ | ↑↑↓↓〉+ | ↓↓↓↓〉 − | ↓↑↓↑〉 − | ↑↓↓↑〉 − | ↓↑↑↓〉
− | ↑↓↑↓〉)A1A2B2C2

+ (| ↑↑〉 − | ↓↓〉)B1C1
(| ↓↑↑↑〉+ | ↑↓↑↑〉+ | ↑↓↓↓〉+ | ↓↓↓↑〉 − | ↑↓↓↑〉

− | ↓↓↑↓〉 − | ↓↑↑↓〉 − | ↑↑↓↑〉)A1A2B2C2
}.

(25)

In order to distill a two-electron entangled state, Bob and Charlie detect their electrons B2 and C2, and Alice detects
her two electrons A1 and A2 with the basis σz ≡ {| ↑〉, | ↓〉}, respectively. When the occupation number of | ↓〉 in the
outcomes is even (such as | ↑↑↑↑〉, | ↓↓↑↑〉, | ↓↑↑↓〉, and so on), Bob and Charlie obtain the two-electron entangled
state |φ+〉B1C1

with the probability of 1
4F0F1. When it is odd, they can obtain the state |φ−〉B1C1

≡ 1√
2
(| ↑↑〉− | ↓↓〉)

with the same probability of 1
4F0F1. The state |φ−〉B1C1

can be transformed into the state |φ+〉 by flipping its relative
phase. As for the cases |ζ〉2, |ζ〉3, and |ζ〉4, the same conclusions can be drawn by simple calculations. Thus, the total
probability of obtaining |φ+〉B1C1

from the cross-combination items |ϕ〉1 and |ϕ〉2 is 2F0F1.
Up to now, the principle of distilling two-electron entangled states from the cross-combination items |Φ+

0 〉A1B1C1
⊗

|Φ+
1 〉A2B2C2

and |Φ+
1 〉A1B1C1

⊗ |Φ+
0 〉A2B2C2

in which only one bit-flip error takes place on Alice’s electrons, has been
completely discussed. As for the other cross-combination items with one bit-flip error, using the same process described
above, the three parties can obtain the two-electron entangled states |φ+〉A1C1

≡ 1√
2
(| ↑↑〉+| ↓↓〉)A1C1

and |φ+〉A1B1
≡

1√
2
(| ↑↑〉 + | ↓↓〉)A1B1

with the probabilities of 2F0F2 and 2F0F3, respectively. When we come to the cases that

there is a bit-flip error on both the systems A1B1C1 and A2B2C2 (the two electrons with a bit-flip error belong
to different participants), that is, |Φ+

i 〉A1B1C1
⊗ |Φ+

j 〉A2B2C2
(i 6= j ∈ {1, 2, 3}), Alice, Bob and Charlie can also

deal with them in the same way. However, the two-electron states obtained will be the ones with bit-flip errors
|ψ+〉A1C1

≡ 1√
2
(| ↑↓〉 + | ↓↑〉)A1C1

, |ψ+〉A1B1
≡ 1√

2
(| ↑↓〉 + | ↓↑〉)A1B1

, and |ψ+〉B1C1
≡ 1√

2
(| ↑↓〉 + | ↓↑〉)B1C1

with

the probabilities 2F1F3, 2F1F2, and 2F2F3, respectively. That is, the states of the two-electron systems kept can be
described as (without normalization)

ρ
AB

= 2F0F3|φ+〉AB〈φ+|+ 2F1F2|ψ+〉AB〈ψ+|,
ρ

AC
= 2F0F2|φ+〉AC〈φ+|+ 2F1F3|ψ+〉AC〈ψ+|,

ρ
BC

= 2F0F1|φ+〉BC〈φ+|+ 2F2F3|ψ+〉BC〈ψ+|. (26)

The fidelity F b
i ≡ F0Fi

F0Fi+FjFk
(i, j and k are different from each other, i, j, k ∈ {1, 2, 3}) of the two-electron subsystems

in the state |φ+〉 is larger than that of the initial three-electron systems F0 when the relation F0 < 1− FjFk

Fi
is satisfied.

Let us take the symmetric noise model F1 = F2 = F3 and F0 > F1 as an example to show the relation between F b
i

and F0. The inequality equation can be simplified to be F0 + F1 < 1 and the fidelity of the distilled two-electron
subsystems F0

F0+F1
is unconditionally larger than that of the transmitted three-electron systems F0. That is to say,

the parties can distill a two-electron spin subsystems with a fidelity higher than F0 from each cross-combination item
discarded in all conventional MEPPs.
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2. Two-electron entanglement purification based on charge detection

After obtaining a set of two-electron entangled subsystems, Alice, Bob, and Charlie can first improve the fidelity
of their two-electron ensembles and then produce a subset of three-electron systems with entanglement link based on
charge detection. The principle of our EPP for two-electron subsystems is similar to all existing conventional two-
qubit EPPs [16–21, 35, 37]. Let us use the two parties Alice and Bob to describe its principle clearly. The principle
of two-electron EPP for any other two parties is the same as this one.
Suppose that the two-electron ensemble obtained by Alice and Bob is in the state

ρAB
0 = f0|φ+〉AB〈φ+|+ f1|ψ+〉AB〈ψ+|. (27)

For each pair of two-electron subsystems, say A1B1 and A2B2, their state is ρAB
0 ⊗ ρAB

0 . It can be viewed as the
mixture of the 4 pure entangled states, that is, |φ+〉A1B1

⊗|φ+〉A2B2
, |φ+〉A1B1

⊗|ψ+〉A2B2
, |ψ+〉A1B1

⊗|φ+〉A2B2
, and

|ψ+〉A1B1
⊗ |ψ+〉A2B2

with the probabilities of f0f0, f0f1, f1f0, and f1f1, respectively. Alice let her two electrons A1

and A2 pass through her PCD, shown in Fig.2. So does Bob. Alice and Bob keep the instances in which they both
obtain an even parity or an odd parity.
When both Alice and Bob obtain an even parity, the four-electron system A1B1A2B2 is in the states

|λ1〉 =
1√
2
(| ↑↑〉A1B1

| ↑↑〉A2B2
+ | ↓↓〉A1B1

| ↓↓〉A2B2
)

and

|λ2〉 =
1√
2
(| ↑↓〉A1B1

| ↑↓〉A2B2
+ | ↓↑〉A1B1

| ↓↑〉A2B2
)

with the probabilities of 1
2f0f0 and 1

2f1f1, respectively. When they both obtain an odd parity, the four-electron
system is in the states

|λ3〉 =
1√
2
(| ↑↑〉A1B1

| ↓↓〉A2B2
+ | ↓↓〉A1B1

| ↑↑〉A2B2
)

and

|λ4〉 =
1√
2
(| ↑↓〉A1B1

| ↓↑〉A2B2
+ | ↓↑〉A1B1

| ↑↓〉A2B2
)

with the probabilities of 1
2f0f0 and 1

2f1f1, respectively. With a bit-flip operation σx = | ↑〉〈↓ |+ | ↓〉〈↑ | on each of the
two electrons A2B2, the states |λ3〉 and |λ4〉 are transformed into the states |λ1〉 and |λ2〉, respectively. That is, Alice
and Bob can obtain the states |λ1〉 and |λ2〉 with the probabilities of f0f0 and f1f1, respectively, when they obtain
the same parity.
After an H operation on each of the two electrons A2 and B2, Alice and Bob measure the spins of these two

electrons with the basis σz . If they obtain the same spin states (that is, both the spin-up state or the spin-down
state), the two-electron subsystem A1B1 kept by Alice and Bob is in the states |φ+〉A1B1

and |ψ+〉A1B1
with the

probabilities of 1
2f0f0 and 1

2f1f1, respectively. If they obtain two different spin states (that is, one is the spin-up
state and the other is the spin-down state), the two-electron subsystem A1B1 is in the states |φ−〉A1B1

and |ψ−〉A1B1

with the probabilities of 1
2f0f0 and 1

2f1f1, respectively. In this time, Alice and Bob can completely transform the
states |φ−〉A1B1

and |ψ−〉A1B1
into the states |φ+〉A1B1

and |ψ+〉A1B1
, respectively. That is to say, the two-electron

ensemble after a round of purification is in the state (without normalization)

ρAB
1 = f2

0 |φ+〉AB〈φ+|+ f2
1 |ψ+〉AB〈ψ+|. (28)

After Alice and Bob perform n times of this two-electron EPP, the two-electron ensemble kept is in the state
(without normalization)

ρAB
n = f2n

0 |φ+〉AB〈φ+|+ f2n

1 |ψ+〉AB〈ψ+|. (29)

The fidelity of the state |φ+〉 is

f ′
n =

f2n

0

f2n
0 + f2n

1

. (30)



9

3. Three-electron entanglement production from two-electron subsystems with entanglement link

With a set of high-fidelity two-electron entangled subsystems, the three parties can create a subset of high-fidelity
three-electron entangled systems nonlocally with entanglement link. As an example, we can use the case with three
symmetric channels F1 = F2 = F3 = 1−F0

3 to show the principle of three-electron entanglement production from
two-electron subsystems below.

C

B

A

DB

Alice 

Bob

Charlie

H

P
C
D

B'

FIG. 3: The principle of the entanglement production of a three-electron system from two two-electron entangled subsystems
with entanglement link based on a PCD.

Without the two-electron entanglement purification process, the density matrices in Eq.(26) are reduced to be
(without normalization)

ρs
AB

= 2F0F1|φ+〉AB〈φ+|+ 2F 2
1 |ψ+〉AB〈ψ+|,

ρs
AC

= 2F0F1|φ+〉AC〈φ+|+ 2F 2
1 |ψ+〉AC〈ψ+|,

ρs
BC

= 2F0F1|φ+〉BC〈φ+|+ 2F 2
1 |ψ+〉BC〈ψ+|. (31)

After n times of the two-electron EPP are performed, the fidelity of the two-electron state |φ+〉 is improved largely
and the density matrices in Eq.(31) become (without normalization)

ρsn
AB

= (2F0F1)
2n |φ+〉AB〈φ+|+ (2F 2

1 )
2n |ψ+〉AB〈ψ+|,

ρsn
AC

= (2F0F1)
2n |φ+〉AC〈φ+|+ (2F 2

1 )
2n |ψ+〉AC〈ψ+|,

ρsn
BC

= (2F0F1)
2n |φ+〉BC〈φ+|+ (2F 2

1 )
2n |ψ+〉BC〈ψ+|.

(32)

Let us assume that F s
0 ≡ (2F0F1)

2n and F s
1 ≡ (2F 2

1 )
2n .

In principle, Alice, Bob, and Charlie can produce a three-electron entangled system from two two-electron subsys-
tems with a high fidelity. Let us take the two-electron subsystems AB and B′C as an example to describe the principle
of entanglement production from two-electron subsystems, shown in Fig.3. The state of the complicated quantum
system composed of four electrons A, B, B′, and C can be viewed as the mixture of four pure states. That is, it is in
the states |φ+〉AB ⊗ |φ+〉B′

C , |φ+〉AB ⊗ |ψ+〉B′
C , |ψ+〉AB ⊗ |φ+〉B′

C , and |ψ+〉AB ⊗ |ψ+〉B′
C with the probabilities of

F s
0F

s
0 , F

s
0F

s
1 , F

s
1F

s
0 , and F

s
1F

s
1 , respectively. Bob performs a parity-check detection on his two electrons B and B′,

and then he divides the four-electron system into two cases according to the outcomes obtained, i.e., an even-parity
case and an odd-parity case. When Bob obtains the even parity, the four-electron system is in the states

|Λ1〉 =
1√
2
(| ↑↑↑↑〉ABB

′
C + | ↓↓↓↓〉ABB

′
C), (33)

|Λ2〉 =
1√
2
(| ↑↑↑↓〉ABB

′
C + | ↓↓↓↑〉ABB

′
C), (34)

|Λ3〉 =
1√
2
(| ↓↑↑↑〉ABB

′
C + | ↑↓↓↓〉ABB

′
C), (35)

and

|Λ4〉 =
1√
2
(| ↑↓↓↑〉ABB

′
C + | ↓↑↑↓〉ABB

′
C) (36)
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with the probabilities 1
2F

s
0F

s
0 ,

1
2F

s
0F

s
1 ,

1
2F

s
1F

s
0 , and

1
2F

s
1F

s
1 , respectively. To obtain the three-electron entangled state,

Bob detects the spin of his electron B
′

with the basis σz ≡ {| ↑〉, | ↓〉} after an H operation is performed on it.
When he obtains | ↑〉B′ , the three electrons ABC are in a mixed state by mixing four pure states |Φ+

0 〉, |Φ+
3 〉, |Φ+

1 〉,
and |Φ+

2 〉 with the probabilities of 1
4F

s
0F

s
0 ,

1
4F

s
0F

s
1 ,

1
4F

s
1F

s
0 , and

1
4F

s
1F

s
1 , respectively. When the state of the electron

B
′

is | ↓〉B′ , they can obtain the same result with a phase-flip operation on the electron A. Therefore, the total
probabilities that Alice, Bob, and Charlie obtain the states |Φ+

0 〉, |Φ+
1 〉, |Φ+

2 〉, and |Φ+
3 〉 are doubled eventually. As

for the odd-parity case, the process utilized is nearly the same as the even-parity case but with an additional bit-flip
operation σx performed on electron C. That is, the state of the three electrons ABC produced with entanglement
link can be written as

ρT = (F s
0 )

2|Φ+
0 〉〈Φ+

0 |+ F s
1F

s
0 |Φ+

1 〉〈Φ+
1 |+ (F s

1 )
2|Φ+

2 〉〈Φ+
2 |+ F s

0F
s
1 |Φ+

3 〉〈Φ+
3 |

= (2F0F1)
2n+1 |Φ+

0 〉〈Φ+
0 |+ (2F0F1)

2n(2F 2
1 )

2n |Φ+
1 〉〈Φ+

1 |+ (2F 2
1 )

2n+1 |Φ+
2 〉〈Φ+

2 |
+ (2F0F1)

2n(2F 2
1 )

2n |Φ+
3 〉〈Φ+

3 |. (37)

The fidelity of the three-electron state |Φ+
0 〉ABC is

FT
0 =

F 2n+1

0

(F 2n
0 + F 2n

1 )2
. (38)

FT
0 > F0 when F0 >

1
4 .

C. Numerical comparisons of efficiency, fidelity, and yield between our MEPP and conventional MEPPs

Usually, the efficiency of an EPP E is defined as the probability that the parties can obtain a high-fidelity entangled
three-electron system (or entangled two-electron subsystems) from a pair of low-fidelity systems transmitted over a
noisy channel without loss after the parties perform a round of the EPP. The yield of an EPP Y is defined as the
probability that the parties can obtain an entangled three-electron system with the fidelity higher than a threshold
value Fthr, from a pair of low-fidelity systems transmitted after some rounds of the EPP are performed. It is obvious
that the efficiency and the yield of our three-electron EPP Eo and Yo depends on the three parameters F1, F2, and
F3. For simplicity, we only discuss the case with the parameters F1 = F2 = F3 = 1−F0

3 below to show the difference
between our MEPP and conventional ones clearly. Let us assume that the threshold value of the final fidelity after
purification is Fthr = 0.95, which means that the parties should improve the fidelity of the three-electron systems
kept to be F ′ ≥ Fthr by repeating the MEPP some times. For comparison, we use the efficiency obtained with our
normal EPP En to represent that in conventional MEPPs as it is just the maximal efficiency that the parties can
obtain from the identity-combination items.

By running our normal three-photon EPP only once, the efficiency of the three-photon EPP E
(1)
n is

E(1)
n = F 2

0 + F 2
1 + F 2

2 + F 2
3 =

1− 2F0 + 4F 2
0

3
. (39)

It is just the probability that the pair of three-electron systems are in the identity-combination items |Φ+
i 〉A1B1C1

⊗
|Φ+

i 〉A2B2C2
(i = 0, 1, 2, 3). After a round of entanglement purification, the fidelity of the three-electron systems kept

(i.e., the relative probability of the state |Φ+
0 〉ABC) becomes

F (1)
n =

F 2
0

F 2
0 + F 2

1 + F 2
2 + F 2

3

=
3F 2

0

1− 2F0 + 4F 2
0

. (40)

As each cross-combination item |Φ+
i 〉 ⊗ |Φ+

j 〉 (i 6= j ∈ {0, 1, 2, 3}) will lead the three parties to obtain an entangled

two-electron subsystem, the probability P
(1)
3→2 that the three parties obtain two-electron subsystems from a pair of

three-electron systems in the cross-combination items is

P
(1)
3→2 =

3
∑

j 6=l=0

FjFl = F0(F1 + F2 + F3) + F1(F0 + F2 + F3)

+ F2(F0 + F1 + F3) + F3(F0 + F1 + F2)

=
2 + 2F0 − 4F 2

0

3
. (41)
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FIG. 4: Numerical comparison for the efficiency and fidelity between our MEPP and others. (a) The efficiency of our EPP

E
(1)
o and the maximal value of efficiency from the conventional MEPPs E

(1)
n for three-electron systems under a symmetric noise

(F1 = F2 = F3 = 1−F0

3
) are shown with a blue dot line and a black solid line, respectively. Here E

(1)
2→3 is the efficiency that the

three parties can obtain three-electron systems from two-electron systems with entanglement link based on charge detection.
(b) The fidelity of the present MEPP Fe and that of the conventional MEPP Fn. Here F2 and F2→3 is the fidelities of the
two-photon systems obtained from the cross-combinations and that of the three-photon systems obtained directly from two-
photon systems with entanglement link, respectively. F0 is just the original fidelity of three-photon systems before entanglement
purification.

Because Alice, Bob, and Charlie can in principle obtain a three-electron system from a pair of two-electron subsystems
with entanglement link based on charge detection if they do not improve the fidelity of their two-electron subsystems
before entanglement link, the efficiency that the three parties obtain three-electron entangled systems from two-

electron entangled subsystems E
(1)
2→3 is a half of P

(1)
3→2, that is,

E
(1)
2→3 =

1

2
P

(1)
3→2 =

1 + F0 − 2F 2
0

3
. (42)

Taking three-electron entanglement production with entanglement link into account, the efficiency of our MEPP

E
(1)
o for three-electron systems after the three parties accomplish a round of entanglement purification for bit-flip

errors is

E(1)
o = E(1)

n + E
(1)
2→3 =

2− F0 + 2F 2
0

3
. (43)

The efficiency of our MEPP E
(1)
o and the maximal value of that from the identity-combination items for three-qubit

systems E
(1)
n are shown in Fig.4(a). Also, we give the efficiency that the three parties obtain three-electron entangled

systems from two-electron entangled subsystems E
(1)
2→3 in Fig.4(a).
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The fidelity of the two-electron subsystems obtained from cross-combinations without two-electron entanglement
purification is

F
(1)
2 =

2F0F1

2F0F1 + 2F 2
1

=
F0

F0 + F1
=

3F0

1 + 2F0
. (44)

The fidelity of the three-electron systems obtained from two-electron subsystems with entanglement link is

F
(1)
2→3 =

F 2
0

(F0 + F1)2
=

9F 2
0

1 + 4F0 + 4F 2
0

. (45)

The relation of the three fidelities F
(1)
n , F

(1)
2 , and F

(1)
2→3 is shown in Fig.4(b).
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FIG. 5: The rate of the yield from our recycling thee-electron EPP Yr to that from our normal three-electron EPP Yn with the
threshold value Fthr = 0.95. In order to see the contribution of our recycling EPP in a clear way, we use an insert to show the
rate for the original fidelity F0 from 0.4 to 0.95.

From Fig.4, one can see that our MEPP is more efficient than the conventional MEPPs, especially in the case that

the original fidelity F0 is not big. On the other hand, the fidelity F
(1)
2→3 is smaller than F

(1)
n although they both are

larger than the original fidelity F0 when F0 >
1
4 . F

(1)
2 is larger than F

(1)
n when F0 <

1
2 and it is smaller than F

(1)
n

when F0 >
1
2 . If three parties first run the two-electron EPP n times and then produce some three-electron systems

with entanglement link from high-fidelity two-electron subsystems, the fidelity F
(n)
2→3 =

F 2n+1

0

(F 2n

0
+F 2n

1
)2

can be improved

to be larger than F
(1)
n .

In order to show the contribution of the part from our recycling EPP clearly, we calculate the rate of its yield Yr
to that from our normal EPP Yn for three-electron systems with the threshold value Fthr = 0.95, shown in Fig.5.
From this figure, one can see that the contribution of our recycling three-electron EPP is larger than that of our
normal EPP if the original fidelity F0 is smaller than 0.38. When F0 is no more than 0.478, the contribution of our
recycling EPP is considerable. When F0 is larger than 0.716, the number that the parties need to repeat their EPP
for obtaining three-electron systems with the fidelity larger than the threshold value Fthr = 0.95 from two-electron
subsystems is reduced to one, which increases the rate of the contribution of our recycling EPP. As our three-electron
EPP contains two parts, that is, our normal EPP and our recycling EPP, no matter what the original fidelity F0

is, the yield of our three-electron EPP is larger than that from conventional MEPPs as the latter is just the part
discarded in all conventional MEPPs [22–25, 36].

III. DISCUSSION AND SUMMARY

We have fully described the principle of our efficient three-electron EPP for GHZ states. It is not difficult to prove
that our efficient EPP works for N -electron systems in a GHZ state. The GHZ state of a multipartite entangled
system composed of N electrons can be described as

|Φ+
0 〉N =

1√
2
(| ↑↑ · · · ↑〉+ | ↓↓ · · · ↓〉)A,B,··· ,Z . (46)
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Here the subscripts A, B, · · · , and Z represent the electrons belonging to the parties Alice, Bob, · · · , and Zach,
respectively. Certainly, there are another 2N − 1 GHZ states for an N -qubit system and can be written as

|Φ+
ij···k〉N =

1√
2
(|ij · · · k〉+ |̄ij̄ · · · k̄〉)AB···Z (47)

and

|Φ−
ij···k〉N =

1√
2
(|ij · · · k〉 − |̄ij̄ · · · k̄〉)AB···Z . (48)

Here ī = 1 − i, j̄ = 1 − j, k̄ = 1 − k, and i, j, k ∈ {0, 1}. |0〉 ≡ | ↑〉 and |1〉 ≡ | ↓〉. For correcting the bit-flip errors
in N -electron entangled quantum systems, we can also divide the whole entanglement purification into two parts.
One is our normal N -electron entanglement purification and the other is our recycling entanglement purification
with entanglement link from subsystems. Our normal entanglement purification for N -electron entangled quantum
systems with bit-flip errors is similar to that for three-electron entangled quantum systems. We should only increase
the number of the PCDs and the Hadamard operations shown in Fig. 2. Let us assume that the ensemble ofN -electron
systems after the transmission over a noisy channel is in the state

ρN = f
′

0|Φ+
0 〉N 〈Φ+

0 |+ · · ·+ f
′

ij···k|Φ+
ij···k〉N 〈Φ+

ij···k|+ · · ·+ f
′

2N−1−1|Φ+
2N−1−1〉N 〈Φ+

2N−1−1|. (49)

Here f
′

ij···k presents the probability that an N -electron system is in the state |Φ+
ij···k〉N and

f
′

0 + · · ·+ f
′

ij···k + · · ·+ f
′

2N−1−1 = 1. (50)

In our normalN -electron entanglement purification for a pair of systems, the parties will keep the identity-combination
items |Φ+

0 〉N ⊗ |Φ+
0 〉N , · · · , |Φ+

ij···k〉N ⊗ |Φ+
ij···k〉N , · · · , and |Φ+

2N−1−1
〉N ⊗ |Φ+

2N−1−1
〉N with the probabilities f

′2
0 , · · · ,

f
′2
ij···k, · · · , and f

′2
2N−1−1, respectively. That is, they keep the instances in which they all obtain the even parity and those

in which they all obtain the odd parity with their PCDs. With the similar process to the case for three-electron systems,
the parties can obtain a new N -electron system which is in the states |Φ+

0 〉N = 1√
2
(|HH · · ·H〉+|V V · · ·V 〉)A1,B1,··· ,Z1

,

· · · , |Φ+
ij···k〉N = 1√

2
(|ij · · · k〉 + |̄ij̄ · · · k̄)A1,B1,··· ,Z1

, · · · , and |Φ+
2N−1−1

〉N = 1√
2
(|HV · · ·V 〉 + |V H · · ·H〉)A1,B1,··· ,Z1

with the probabilities f
′2
0 , · · · , f ′2

ij···k, · · · , and f
′2
2N−1−1, respectively. That is, the parties can obtain a new ensemble

of N -electron systems ρ′N with the fidelity f ′′
0 =

f
′2
0

f
′2
0

+···+f
′2
ij···k

+···+f
′2

2N−1
−1

from the original ensemble in the state ρN .

Our recycling EPP is used to distill some N ′-electron subsystems (2 ≤ N ′ < N) from the cross-combination items
|Φ+

lr···q〉N ⊗ |Φ+
ij···k〉N and |Φ+

ij···k〉N ⊗ |Φ+
lr···q〉N (l, r, · · · , q ∈ {0, 1} and l 6= i, r 6= j, · · · , or q 6= k). Its process is also

similar to the case with three-electron systems. The more the number of the electrons in each system, the more the
kinds of the entanglement purification with entanglement link.
Compared with the conventional MEPPs [22–25, 36], the present MEPP contains two parts. One is our normal

MEPP which is similar to the conventional MEPPs as the high-fidelity N -electron systems are directly obtained
from the identity-combination items |Φ+

0 〉N ⊗ |Φ+
0 〉N , · · · , |Φ+

ij···k〉N ⊗ |Φ+
ij···k〉N , · · · , and |Φ+

2N−1−1〉N ⊗ |Φ+
2N−1−1〉N .

However, as the cross-combination items |Φ+
lr···q〉N ⊗ |Φ+

ij···k〉N and |Φ+
ij···k〉N ⊗ |Φ+

lr···q〉N (l, r, · · · , q ∈ {0, 1} and

l 6= i, r 6= j, · · · , or q 6= k) can not be used to obtain high-fidelity N -electron systems directly, they are discarded
in the conventional MEPPs. In our recycling EPP, the second part of our efficient MEPPs, the parties distill some
subsystems with a high fidelity from the cross-combination items. With entanglement purification on the subsystems
and the entanglement production based on local entanglement link, the parties can obtain some additional yield of
N -electron systems with the fidelity higher than the threshold value, which makes our MEPP more efficient than the
conventional MEPPs.
The PCD is the key element in our high-yield MEPP and charge detection plays a crucial role in constructing the

PCD for the spins of two electrons. Charge detection has been realized by means of point contacts in a two-dimensional
electron gas. For instance, Field et al. [31] used the effect of the electric field of the charge on the conductance of an
adjacent point contact to realize the charge detection in 1993. Elzerma et al. [39] reported their experimental results
that the current achievable time resolution for charge detection is µs in 2004. Trauzettel et al. [40] also proposed a
realization of a charge-parity meter which is based on two double quantum dots alongside a quantum point contact in
2006. Their realization of such a device can be seen as a specific example of the general class of mesoscopic quadratic
quantum measurement detectors which is investigated by Mao et al. [41]. Moreover, recent studies showed that the
interaction between the polarizations of photons and the electron spins of quantum dots in optical cavities can also
be used to construct the PCD, as shown in Refs.[42–47]
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In summary, we have proposed a high-efficiency MEPP for N -electron systems in a GHZ state, resorting to the
PCD based on charge detection. It contains two parts. One is our normal MEPP with which the parties can obtain
a high-fidelity N -electron ensemble directly. This part comes from the identity-combination items of a pair of N -
electron systems, similar to conventional MEPPs but with a higher efficiency. The cross-combination items, which
are discarded in all existing conventional MEPPs, can be used to distill some N ′-electron subsystems (2 ≤ N ′ < N)
by measuring the electrons with potential errors in our recycling MEPP, the second part of our high-yield MEPP.
Our normal MEPP has a higher efficiency than the MEPP for a Werner-type state with perfect CNOT gates [22].
Especially, it doubles the efficiency of the MEPP with QNDs based on cross-Kerr nonlinearity in Ref. [25] and the
MEPP for electronic systems [36]. In our recycling MEPP, the parties in quantum communication can produce some
high-fidelity N -electron systems with entanglement link based on the parity-check detection. Combining the second
part of our MEPP with the first one, the present MEPP has a higher efficiency and yield than the conventional
MEPPs largely.
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