Skip to main content
Log in

The effect of temperature and magnetic field on a quantum rod qubit

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Hamiltonian of a quantum rod (QR) with an ellipsoidal boundary is given after a coordinate transformation, which changes the ellipsoidal boundary into a spherical one. We obtain the eigenenergies and eigenfunctions of the ground and the first excited states of an electron, which is strongly coupled to the LO-phonon in a QR under an applied magnetic field by using the Pekar variational method. This system in QR may be employed as a two-level qubit. When the electron is in the superposition state of the ground and the first-excited states, we study the time evolution of the electron probability density. The relations of the probability density of electron on the temperature and the relations of the period of oscillation on the temperature and the cyclotron frequency of magnetic field are taken into consideration. The results show that the probability density of the electron oscillates in the QR with a oscillation period. It is found that the electron probability density and the oscillation period increase (decrease) with increasing temperature in lower (higher) temperature regime. The electron probability density increases (decreases) with increasing cyclotron frequency when the temperature is lower (higher). The oscillation period decreases with the increase of the cyclotron frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peng X., Manna L., Yang W., Wickham J., Scher E., Kadavanich A., Alivisatos A.P.: Shape control of CdSe nanocrystals. Nature (London) 404, 59–61 (2000)

    Article  ADS  Google Scholar 

  2. Kan S., Mokari T., Rothenberg E., Banin U.: Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods. Nature (London) 2, 155–158 (2003)

    Article  ADS  Google Scholar 

  3. Sek G., Podemski P., Misiewicz J., Li L.H., Fiore A., Patriarche G.: Photoluminescence from a single InGaAs epitaxial quantum rod. Appl. Phys. Lett. 92, 021901 (2008)

    Article  ADS  Google Scholar 

  4. Sikorski C., Merkt U.: Spectroscopy of electronic states in InSb quantum dots. Phys. Rev. Lett. 62, 2164–2167 (1989)

    Article  ADS  Google Scholar 

  5. Lorke A., Kotthaus J.P., Ploog K.: Coupling of quantum dots on GaAs. Phys. Rev. Lett. 64, 2559–2562 (1990)

    Article  ADS  MATH  Google Scholar 

  6. Normura S., Kobayashi T.: Exciton-LO-phonon couplings in spherical semiconductor microcrystallites. Phys. Rev. B 45, 1305–1316 (1992)

    Article  ADS  Google Scholar 

  7. Li S.S., Xia J.B.: Electronic structure and binding energy of a hydrogenic impurity in a hierarchically self-assembled GaAs/AlxGa1-xAs quantum dot. J. Appl. Phys. 100, 083714 (2006)

    Article  ADS  Google Scholar 

  8. Li S.S., Xia J.B.: Effective-mass theory for coupled quantum dots grown on (11N)-oriented substrates. Chin. Phys. 16, 1–5 (2007)

    Article  ADS  MATH  Google Scholar 

  9. Chi F., Li S.S.: Spin-polarized transport through an Aharonov-Bohm interferometer with Rashba spin-orbit interaction. J. Appl. Phys. 99, 043705 (2006)

    Article  ADS  Google Scholar 

  10. Fedichkin L., Fedorov A.: Error rate of a charge qubit coupled to an acoustic phonon reservoir. Phys. Rev. A 69, 032311 (2004)

    Article  ADS  MATH  Google Scholar 

  11. Li S.S., Xia J.B., Liu J.L., Yang F.H., Niu Z.C., Feng S.L., Zheng H.Z.: InAs/GaAs single-electron quantum dot qubit. J. Appl. Phys. 90, 6155 (2001)

    ADS  Google Scholar 

  12. Li S.S., Long G.L., Bai F.S., Feng S.L., Zheng H.Z.: Quantum computing. Proc. Natl. Acad. Sci. USA 98, 11847–11848 (2001)

    Article  ADS  Google Scholar 

  13. Li W.P., Yin J.W., Yu Y.F., Wang Z.W., Xiao J.L.: The effect of magnetic on the properties of a parabolic quantum dot qubit. J. Low Temp. Phys. 160, 112–118 (2010)

    Article  ADS  Google Scholar 

  14. Zhao C.L., Xiao J.L.: Temperature effect of strong-coupling magnetopolaron in quantum rods. J. Low Temp. Phys. 160, 209–218 (2010)

    Article  ADS  Google Scholar 

  15. Li Z.X., Ding Z.H., Xiao J.L.: Temperature effect on magnetopolaronic vibrational frequency in an anisotropic quantum dot. J. Low Temp. Phys. 159, 592–600 (2010)

    Article  ADS  Google Scholar 

  16. Xiang, S.H., Song, K.H.: Entanglement decoherence of two-particle entangled states in a noisy environment. Acta Phys. Sinica 55, 529–534 (2006) (in Chinese)

    MATH  Google Scholar 

  17. Li X.Z., Xia J.B.: Electronic structure and optical properties of quantum rods with wurtzite structure. Phys. Rev. B 66, 115316 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Ding, ZH. & Xiao, JL. The effect of temperature and magnetic field on a quantum rod qubit. Quantum Inf Process 12, 935–943 (2013). https://doi.org/10.1007/s11128-012-0436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0436-1

Keywords

Navigation