Skip to main content

Advertisement

Log in

The CGMV method for quantum walks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We review the main aspects of a recent approach to quantum walks, the CGMV method. This method proceeds by reducing the unitary evolution to canonical form, given by the so-called CMV matrices, which act as a link to the theory of orthogonal polynomials on the unit circle. This connection allows one to obtain results for quantum walks which are hard to tackle with other methods. Behind the above connections lies the discovery of a new quantum dynamical interpretation for well known mathematical tools in complex analysis. Among the standard examples which will illustrate the CGMV method are the famous Hadamard and Grover models, but we will go further showing that CGMV can deal even with non-translation invariant quantum walks. CGMV is not only a useful technique to study quantum walks, but also a method to construct quantum walks à la carte. Following this idea, a few more examples illustrate the versatility of the method. In particular, a quantum walk based on a construction of a measure on the unit circle due to F. Riesz will point out possible non-standard behaviours in quantum walks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlbrecht, A., Alberti, A., Meschede, D., Scholz, V.B., Werner, A.H., Werner, R.F.: Bound molecules in an interacting quantum walk. arXiv:1105.1051 (2011)

  2. Ahlbrecht A., Vogts H., Werner A.H., Werner R.F.: Asymptotic evolution of quantum walks with random coin. J. Math. Phys. 52, 042201 (2011)

    Article  ADS  Google Scholar 

  3. Allcock, G.R.: The time of arrival in quantum mechanics, Ann. Phys. (N.Y.) 53, 253–285, 286–310, 311–348 (1969)

    Google Scholar 

  4. Bach E., Coppersmith S., Goldschen M., Joynt R., Watrous J.: One-dimensional quantum walks with absorbing boundaries. J. Comput. Syst. Sci. 69, 562–592 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cantero M.J., Grünbaum F.A., Moral L., Velázquez L.: Matrix valued Szegő polynomials and quantum random walks. Commun. Pure Appl. Math. 58, 464–507 (2010)

    Google Scholar 

  6. Cantero M.J., Grünbaum F.A., Moral L., Velázquez L.: One-dimensional quantum walks with one defect. Rev. Math. Phys. 24, 1250002 (2012)

    Article  MathSciNet  Google Scholar 

  7. Cantero M.J., Moral L., Velázquez L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cantero M.J., Moral L., Velázquez L.: Minimal representations of unitary operators and orthogonal polynomials on the unit circle. Linear Algebra Appl. 408, 40–65 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Damanik D., Pushnitski A., Simon B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1–85 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Feller W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1968)

    MATH  Google Scholar 

  11. Grimmett G., Janson S., Scudo P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  12. Grünbaum, F.A., Velázquez, L.: The quantum walk of F. Riesz, Proceedings of FoCAM 2011, Budapest, Hungary, to be published in the London Mathematical Society Lecture Note Series. arXiv:1111.6630 [math-ph]

  13. Grünbaum, F.A., Velázquez, L.: CMV quantum walks and the Grover model, in preparation

  14. Grünbaum, F.A., Velázquez, L., Vinet, L., Zhedanov, A.: Quantum walks with pure point spectrum, in preparation

  15. Grünbaum, F.A., Velázquez, L., Werner, A.H., Werner, R.F.: Recurrence for discrete time unitary evolutions. Comm. Math. Phys. (to appear) arXiv:1202.3903 [quant-ph]

  16. Inui N. et al.: One-dimensional three-state quantum walk. Phys. Rev. E 72, 056112 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  17. Konno, N.: Quantum Walks, Lecture Notes in Mathematics, 1954, pp. 309–452. Springer, Berlin (2008)

  18. Konno N.: Localization of an inhomogeneous discrete-time quantum walk on the line. Quantum Inf. Process. 9, 405–418 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Konno, N., Łuczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. (2012). doi:10.1007/s11128-011-0353-8

  20. Konno N., Segawa E.: Localization of discrete time quantum walks on a half line via the CGMV method. Quantum Inf. Comput. 11, 485–495 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Khrushchev S.: Schur’s algorithm, orthogonal polynomials and convergence of Wall’s continued fractions in \({L^2(\mathbb{T})}\) . J. Approx. Theory 108, 161–248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pólya G.: Über eine Aufgabe der Wahrscheinlichkeitsrechnung betreffend die Irrfahrt im Strassennetz. Mathematische Annalen 84, 149–160 (1921)

    Article  MathSciNet  MATH  Google Scholar 

  23. Riesz F.: Über die Randwerte einer analytischen Funktion. Math. Z. 18, 87–95 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simon B.: Orthogonal Polynomials on the Unit Circle, Part 1: Classical Theory, AMS Colloq. Publ., vol. 54. 1. AMS, Providence (2005)

    Google Scholar 

  25. Simon B.: Orthogonal Polynomials on the Unit Circle, Part 2: Spectral Theory, AMS Colloq. Publ, vol. 54. 2. AMS, Providence (2005)

    Google Scholar 

  26. Simon B.: CMV matrices: five years after. J. Comput. Appl. Math. 208, 120–154 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Štefaňák M., Jex I., Kiss T.: Recurrence and Pólya number of quantum walks. Phys. Rev. Lett. 100, 020501 (2008)

    Article  Google Scholar 

  28. Štefaň M., Kiss T., Jex I.: Recurrence properties of unbiased coined quantum walks on infinite d-dimensional lattices. Phys. Rev. A 78, 032306 (2008)

    Article  ADS  Google Scholar 

  29. Štefaňák M., Kiss T., Jex I.: Recurrence of biased quantum walks on a line. New. J. Phys. 11, 043027 (2009)

    Article  Google Scholar 

  30. Watkins D.S.: Some perspectives on the eigenvalue problem. SIAM Rev. 35, 430–471 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Werner R.F.: Arrival time observables in quantum mechanics. Ann. Inst. H. Poincaré Phys. Théor. 47, 429–449 (1987)

    MATH  Google Scholar 

  32. Zhedanov A.: Elliptic polynomials orthogonal on the unit circle with a dense point spectrum. Ramanujan J. 19, 351–384 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Velázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantero, M.J., Grünbaum, F.A., Moral, L. et al. The CGMV method for quantum walks. Quantum Inf Process 11, 1149–1192 (2012). https://doi.org/10.1007/s11128-012-0448-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0448-x

Keywords

Mathematics Subject Classification (2000)

Navigation