Skip to main content
Log in

Intricacies of quantum computational paths

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Graph search represents a cornerstone in computer science and is employed when the best algorithmic solution to a problem consists in performing an analysis of a search space representing computational possibilities. Typically, in such problems it is crucial to determine the sequence of transitions performed that led to certain states. In this work we discuss how to adapt generic quantum search procedures, namely quantum random walks and Grover’s algorithm, in order to obtain computational paths. We then compare these approaches in the context of tree graphs. In addition we demonstrate that in a best-case scenario both approaches differ, performance-wise, by a constant factor speedup of two, whilst still providing a quadratic speedup relatively to their classical equivalents. We discuss the different scenarios that are better suited for each approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of ACM Symposium on Theory of Computation (STOC’01), pp. 50–59 (2001). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0012090

  2. Aharonov Y., Davidovich L., Zagury N.: Quantum random walks. Phys. Rev. A 48(2), 1687–1690 (1993) doi:10.1103/PhysRevA.48.1687

    Article  ADS  Google Scholar 

  3. Ambainis, A.: Quantum lower bounds by quantum arguments. eprint arXiv:quant-ph/0002066 (2000)

  4. Ambainis, A.: A nearly optimal discrete query quantum algorithm for evaluating NAND formulas. ArXiv e-prints (2007)

  5. Ambainis, A., Childs, A., Reichardt, B.: Any and-or formula of size n can be evaluated in time \({n^{\frac{1}{2} + o(1)}}\) on a quantum computer. In: Foundations of Computer Science, 2007. FOCS ’07. IEEE Symposium on 48th Annual, pp. 363–372 (2007). doi:10.1109/FOCS.2007.57

  6. Beals R., Buhrman H., Cleve R., Mosca M., de Wolf R.: Quantum lower bounds by polynomials. J. ACM 48, 778–797 (2001) doi:10.1145/502090.502097

    Article  MathSciNet  MATH  Google Scholar 

  7. Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing (1997). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/9701001

  8. Boyer, M., Brassard, G., Hoeyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschritte der Physik 46, 493 (1998). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/9605034

  9. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, pp. 63–68. ACM, New York (1998). doi:10.1145/276698.276713

  10. Childs, A.M.: Lecture 14: Discrete-time quantum walk. University of Waterloo (2011). http://www.math.uwaterloo.ca/~amchilds/teaching/w11/l14.pdf

  11. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.: Exponential algorithmic speedup by quantum walk. In: Proceedings of the 35th ACM Symposium on Theory of Computing (STOC 2003), pp. 59–68 (2003)

  12. Childs, A.M., Cleve, R., Jordan, S.P., Yonge-Mallo, D.: Discrete-query quantum algorithm for nand trees. Theory Comput. 5(1), 119–123 (2009). doi:10.4086/toc.2009.v005a005. http://www.theoryofcomputing.org/articles/v005a005

  13. Childs, A.M., Reichardt, B.W., Spalek, R., Zhang, S.: Every NAND formula of size N can be evaluated in time \({N^{\frac{1}{2}+o(1)}}\) on a quantum computer. eprint arXiv:quant-ph/0703015 (2007)

  14. Cleve R., Gavinsky D., Yonge-Mallo D.: Quantum algorithms for evaluating min-max trees. In: Kawano, Y., Mosca, M. (eds) Proceedings of Theory of Quantum Computation, Communication, and Cryptography (TQC 2008), pp. 11–15. Springer, Berlin (2008)

    Chapter  Google Scholar 

  15. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Introduction to Algorithms, 2/e. MIT Press, Cambridge (2001)

    Google Scholar 

  16. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the hamiltonian nand tree. Theory Comput. 4(1), 169–190 (2008). doi:10.4086/toc.2008.v004a008. http://www.theoryofcomputing.org/articles/v004a008

  17. Farhi, E., Gutmann, S.: Quantumcomputation and decision trees. Phys. Rev. A 58(2), 915–928 (1998). doi:10.1103/PhysRevA.58.915

    Google Scholar 

  18. Grover, L., Rudolph, T.: How significant are the known collision and element distinctness quantum algorithms? Quantum Inf. Comput. 4, 201 (2004). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0309123

  19. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: STOC ’96: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996). doi:10.1145/237814.237866

  20. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997). doi:10.1103/PhysRevLett.79.325

    Google Scholar 

  21. Hogg, T.: A framework for structured quantum search. Phys. D 120, 102 (1998). URL http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/9701013

  22. Hsu F.H.: Behind Deep Blue: Building the Computer That Defeated the World Chess Champion. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  23. Hughes B.D.: Random Walks and Random Environments, Volume 1: Random Walks. Oxford University Press, USA (1995)

    Google Scholar 

  24. Kaye P.R., Laflamme R., Mosca M.: An Introduction to Quantum Computing. Oxford University Press, USA (2007)

    MATH  Google Scholar 

  25. Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307 (2003). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0303081

    Google Scholar 

  26. Laird J.E., Newell A., Rosenbloom P.S.: Soar: An architecture for general intelligence. Artif. Intell. 33(1), 1–64 (1987)

    Article  MathSciNet  Google Scholar 

  27. Moore, C., Russell, A.: Quantum Walks on the Hypercube. eprint arXiv:quant-ph/0104137 (2001)

  28. Nayak, A., Vishwanath, A.: Quantum Walk on the Line. Technical report. DIMACS Technical Report (2000). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/0010117

  29. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67(5), 052,307 (2003). doi:10.1103/PhysRevA.67.052307

    Google Scholar 

  30. Sipser, M.: Introduction to the Theory of Computation. Computer Science Series. Thomson Course Technology (2006). http://books.google.pt/books?id=SV2DQgAACAAJ

  31. Tarrataca, L., Wichert, A.: Tree search and quantum computation. Quantum Inf. Process. 10(4), 475–500 (2011). doi:10.1007/s11128-010-0212-z

  32. Watrous, J.: Quantum simulations of classical random walks and undirected graph connectivity. CoRR cs.CC/9812012 (1998)

  33. Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746 (1999). http://www.citebase.org/abstract?id=oai:arXiv.org:quant-ph/9711070

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Tarrataca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarrataca, L., Wichert, A. Intricacies of quantum computational paths. Quantum Inf Process 12, 1365–1378 (2013). https://doi.org/10.1007/s11128-012-0475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0475-7

Keywords

Mathematics Subject Classification (2000)

Navigation