
ar
X

iv
:1

20
6.

15
66

v1
 [

qu
an

t-
ph

]
 7

 J
un

 2
01

2

Non-Pauli Observables for CWS Codes

Douglas F.G. Santiago†, Renato Portugal‡, Nolmar Melo‡

† Universidade Federal dos Vales do Jequitinhonha e Mucuri

Diamantina, MG 39100000, Brazil

douglassant@gmail.com

‡ Laboratório Nacional de Computação Cient́ıfica

Petrópolis, RJ 25651-075, Brazil

portugal@lncc.br, nolmar@lncc.br

November 5, 2018

Abstract

It is known that nonadditive quantum codes are more optimal for error cor-
rection when compared to stabilizer codes. The class of codeword stabilized codes
(CWS) provides tools to obtain new nonadditive quantum codes by reducing the
problem to finding nonlinear classical codes. In this work, we establish some results
on the kind of non-Pauli operators that can be used as decoding observables for
CWS codes and describe a procedure to obtain these observables.

1 Introduction

It is known that quantum computers are able to solve hard problems in polynomial time
and to increase the speed of many algorithms [1, 2, 3, 4]. Decoherence problems are
present in any practical implementation of quantum devices, especially in large-scale
quantum computer. Quantum error correcting codes (QECCs) can be used to solve
these problems by using extra qubits and storing information using redundancy [5, 6,
7, 8].

The framework of stabilizer codes was used to obtain a large class of important
quantum codes [9, 10, 11]. A code is called a stabilizer code if it is in the joint positive
eigenspace of a commutative subgroup of Pauli group. In certain cases, these codes are
suboptimal, because there is larger class, called nonadditive codes.

An important class of nonadditive codes, called CWS, has been studied recently [12,
13, 14, 15, 16]. The framework of CWS codes generalizes the stabilizer code formalism
and has been used to build some good nonadditive codes, in some cases enlarging the
logical space of stabilizer codes of the same length. On the one hand, many papers
address codification procedures for CWS codes, and on the other hand few papers
address decodification procedures. Decoding observables of specific codes are known,
such as the ((9,12,3)) and ((10,24,3)) codes and associated families [13, 17]. A generic
decoding procedure for binary CWS codes was proposed in Ref. [18] and extended for
nonbinary CWS codes in Ref. [19].

1

http://arxiv.org/abs/1206.1566v1

In this work, we establish a condition to the existence of non-Pauli CWS observables,
that can be written in terms of the stabilizers associated to the CWS code. We describe
a procedure to find these observables, which is specially useful for CWS codes that are
close to stabilizer codes.

This paper is divided in the following parts. In Section 2, we review the structure
of CWS codes and introduce the notations that will used in this work. In Section 3, we
present the main results, in special Theorem 2, its corollary and the procedure to find
non-Pauli observables. In Section 4, we give an example and in Section 5, we present
the conclusions.

2 CWS codes

An ((n,K)) CWS code in the Hilbert space Hn is described by

1. A stabilizer group S = 〈s1, . . . , sn〉, where {si} is a generator set of indepen-
dent and commutative Pauli operators (elements of Pauli group Gn). This group
stabilizes a single codeword |ψ〉;

2. A set of Pauli operators W = {W1, . . . ,WK}. The set {Wj |ψ〉} spans the CWS
code and each Wi is called a codeword operator.

Cross et al. [20] have showed that any binary CWS code is equivalent to a CWS
code in a standard form, which is characterized by: (1) a graph of n vertices, (2) a set
of Pauli operators si = XiZ

ri , where ri is the i-th line of the adjacency matrix (M),
and (3) codeword operators Wj = ZCj , where C1 = (0, . . . , 0), that is, W1 = I.

In the standard form, correctable Pauli errors can be expressed as binary strings. A
Pauli error E = ZVXU , where V,U ∈ F

n
2 , can be mapped modulo a phase to an error

ZClS(E) through function

ClS(Z
VXU) = V +MU ∈ F

n
2 .

The problem of finding good CWS quantum codes is reduced to the problem of finding
good classical codes. Theorem 3 of Cross et al. [20] states that a CWS code in standard
form with stabilizer S spanned by {ZCi |ψ〉} detects errors in the set E = {Ei} if and
only if the classical code {Ci} detects errors in ClS(E). This result is valid because, for
all Ei satisfying ClS(Ei) = 0, we disregard all binary vectors C such that ZCEi = EiZ

C .
Our first goal is to analyze which Pauli operators can be used as observables for

CWS codes. If W is the set of codeword operators and g ∈ NS(W), where NS(W) is
the normalizer of W in S, g can be used as a decoding observable. This follows from
the equalities

gEiWj|ψ〉 = miEigWj |ψ〉 = miEiWjg|ψ〉 = miEiWj|ψ〉,

where mi = ±1. It means that, for a fixed Ei and for all Wj , EiWj |ψ〉 lies entirely
in the eigenspace associated with the eigenvalue mi of g. So, there is no information
leakage after the measurement of observable g. When a CWS code is a stabilizer code,
the decoding procedure uses a generating set of NS(W) as observables. This is not the
only choice, because we can use non-Pauli observables.

2

Our second goal is to establish some results on the existence and form of non-
Pauli CWS observables on the group algebra R[S] over R spanned by S. An operator
A ∈ R[S] can be written as

A =
∑

V ∈Fn
2

αV S
V ,

where we use the notation SV as an element of S = 〈s1, . . . , sn〉 given by

SV = sv11 · · ·svnn ,

where V = (vi, . . . , vn) is a binary vector. We will assign a type to operator A depending
on the number of non-zeros coefficients αV . This type notion is captured in the next
definition.

Definition A type-i observable is an operator A ∈ R[S] that satisfies A2 = I and is
exactly a linear combination of i different elements of S.

Note that this definition makes sense because group S is a subset of a basis of the

Hilbert space, and A =
∑

V ∈Fn
2

αV S
V is written in a unique way.

Type-1 observables are Pauli operators. It is straightforward to show that there are
no type-2 or type-3 observables. In this work, we consider only type-4 observables.

3 Main Results

If a unitary operator A is an observable, then A2 = I. Since we are dealing with
observables in R[S], we have the following proposition:

Proprosition 1. Let S be the stabilizer group of a CWS code in standard form and

A =
∑

V ∈Fn
2

αV S
V an element of R[S]. Then, A2 = I if and only if

∑

V ∈Fn
2

α2
V = 1 and

∑

V ∈Fn
2

αV αV+U = 0, ∀U ∈ F
n
2 \ {0}. (1)

Proof. Take

A2 =
∑

V ∈Fn
2

α2
V I +

∑

V 6=V ′

αV αV ′SV SV ′

.

All terms SU ∈ S \ {I} are present in the second sum, each one as many times as
V + V ′ = U , that is, 2n. So, we can rewrite this equation as

A2 =
∑

V ∈Fn
2

α2
V I +

∑

U∈Fn
2
\{0}

∑

V+V ′=U

αV αV ′SU

=
∑

V ∈Fn
2

α2
V I +

∑

U∈Fn
2
\{0}

SU
∑

V ∈Fn
2

αV αV+U .

Then, result (1) follows.

3

Type-4 observables can be restricted by the following theorem:

Theorem 1. A is a type-4 observable if and only if

A = ±
SV

2

(

−I + SV1 + SV2 + SV1+V2

)

(2)

with V1 6= V2 ∈ F
n
2 \ {0} and V ∈ F

n
2 .

Proof. If A is given by Eq. (2), then it is straightforward to verify that A2 = I. So, A
is a type-4 observable.

Reciprocally, take a type-4 observable A = α1S
U1 + α2S

U2 + α3S
U3 + α4S

U4 . We
have

A2 =

(

4
∑

i=1

α2
i

)

I + 2α1α2S
U1+U2 + 2α1α3S

U1+U3 + 2α1α4S
U1+U4 +

2α2α3S
U2+U3 + 2α2α4S

U2+U4 + 2α3α4S
U3+U4 .

The α’s are not zero. So, A2 = I implies that

4
∑

i=1

α2
i = 1

and the sum of the remaining 6 terms is zero, which implies that U1 + U2 = U3 + U4,
U1 + U3 = U2 + U4 and U1 + U4 = U2 + U3.

We can rewrite A by taking V = U1, V1 = U1 + U2 and V2 = U1 + U3, then
V1 + V2 = U1 + U4 and

A =
SV

2

(

α1I + α2S
V1 + α3S

V2 + α4S
V1+V2

)

.

Note that V1 6= V2 and V1 6= 0 6= V2 because Ui 6= Uj , if i 6= j. The solutions obeying
constraints (1) belong to the set

(α1, α2, α3, α4) ∈ ±1
2{ (−1, 1, 1, 1), (1,−1, 1, 1), (1, 1,−1, 1), (1, 1, 1,−1)}.

The last three solutions can be obtained from the first one by collecting SV1 , SV2 and
SV1+V2 , respectively, and absorbing in SV .

Let us introduce the following notation:

S(V1,V2) =
1

2

(

−I + SV1 + SV2 + SV1+V2

)

. (3)

Note that, for any V1, V2 ∈ F
n
2 , S(V1,V2) stabilizes |ψ〉. In the next Lemma, we use

function F : Gn 7→ F
n
2 , which depends implicitly on V1 and V2, and is defined by

F (G) =

V1 + V2 if G anticommute with SV1 and SV2 ;
V1 if G anticommute only with SV2 ;
V2 if G anticommute only with SV1 ;
0 otherwise.

(4)

4

Lemma 1. Let G be a Pauli operator. If G does not commute with SV1 or SV2 , then
S(V1,V2)G = −SF (G)GS(V1,V2) = −GSF (G)S(V1,V2) = −GS(V1,V 02)SF (G).

Proof. The verification is straightforward.

The conditions to use an operator A as a CWS observable is closely related to the
conditions that guarantees that A stabilizes the code.

Proprosition 2. Let Ci = (c1i , . . . , c
n
i), i = 1, . . . ,K be the classical codewords of a

CWS code in standard form. Let V1, V2, V ∈ F
n
2 and pi = 〈Ci, V1〉 ∨ 〈Ci, V2〉. Then, a

type-4 observable A stabilizes the code if and only if A = SV S(V1,V2) and 〈Ci, V 〉 = pi
for all i.

Proof. Suppose that A = SV S(V1,V2) and 〈Ci, V 〉 = pi is true for all i. Then,

1. if ZCi commutes with SV1 and SV2 , then ZCi also commutes with SV and S(V1,V2),
that is,

SV S(V1,V2)ZCi |ψ〉 = ZCi |ψ〉,

2. if ZCi does not commute with SV1 or SV2 , then ZCi anticommutes with SV .
Besides, Lemma 1 implies that

SV S(V1,V2)ZCi |ψ〉 = SV (−SF (ZCi))ZCiS(V1,V2)|ψ〉 = −SV ZCiSF (ZCi)|ψ〉 =

− SV ZCi |ψ〉 = ZCiSV |ψ〉 = ZCi |ψ〉.

In all cases, A stabilizes the code.
Reciprocally, let A be a type-4 observable. By Theorem 1, we have A = ±SV S{V1,V2}.

Then, A|ψ〉 = ±SV S{V1,V2}|ψ〉 = ±|ψ〉. By supposition, A stabilizes the code. There-
fore, A = SV S{V1,V2}. Besides, to stabilize the code, we have:

1. If a codeword operator Wi = ZCi commutes with SV1 and SV2 , we have

SV S(V1,V2)ZCi |ψ〉 = SV ZCiS(V1,V2)|ψ〉 = SV ZCi |ψ〉 = ZCi |ψ〉.

The last equality implies that SV commutes with ZCi . So, 〈Ci, V 〉 = 0.

2. If Wi = ZCi does not commute with SV1 or SV2 , the Lemma 1 implies that

SV S(V1,V2)ZCi |ψ〉 = SV (−SF (ZCi))ZCiS(V1,V2)|ψ〉 = −SV ZCiSF (ZCi)|ψ〉

= −SV ZCi |ψ〉 = ZCi |ψ〉.

The last equality implies that SV anticommutes with ZCi . So, 〈Ci, V 〉 = 1.

These results show that 〈Ci, V 〉 = pi is true for all i.

Taking V = (v1, . . . , vn) ∈ F
n
2 and pi = 〈Ci, V1〉 ∨ 〈Ci, V2〉, equations 〈Ci, V 〉 = pi

can be put in matrix form

C

v1
...
vn

=

p1
...
pk

, (5)

5

where C is the matrix of all classical codewords

C =

c11 . . . cn1
...

...
...

c1K . . . cnK

. (6)

An operator A can be used as a CWS observable in the decoding procedure, if the
encoded information is not lost after the measurement of A. We have to guarantee
that, for each i and for all j, EiWj|ψ〉 belongs to the eigenspace of EiWj associated
with the eigenvalues 1 or -1, that is,

AEiWj |ψ〉 = EiWj |ψ〉, ∀j

or
AEiWj|ψ〉 = −EiWj|ψ〉, ∀j.

Those facts lead us to the following theorem:

Theorem 2. Let E = {Ei}
T
i=1 be a set of correctable Pauli errors of a CWS code in

standard form. Then, a type-4 observable A = SV S(V1,V2) can be used as a decoding
observable if and only if for all i ∈ {1, . . . , T} there is V ′

i solution of Eq. (5) with
V = V ′

i + F (Ei).

Proof. Suppose that A = SV S(V1,V2) satisfies V = Vi + F (Ei), for all i, where Vi is a
solution of Eq. (5). Let SVEi = miEiS

V , where mi = ±1. Then, by Lemma 1 we have

1. if Ei commutes with SV1 and SV2 , then F (Ei) = (0, . . . , 0) (4) and

AEiWj|ψ〉 = SV S(V1,V2)EiWj|ψ〉 = SVEiS
(V1,V2)Wj|ψ〉

= miEiS
V S(V1,V2)Wj|ψ〉 = miEiS

V+F (Ei)S(V1,V2)Wj|ψ〉

= miEiS
V ′

i S(V1,V2)Wj |ψ〉 = miEiWj |ψ〉.

The last equality holds because SV ′

i S(V1,V2) stabilizes the code.

2. If Ei does not commute with SV1 or SV2 , then

AEiWj|ψ〉 = SV S(V1,V2)EiWj|ψ〉 = −SV+F (Ei)EiS
(V1,V2)Wj |ψ〉

= −miEiS
V ′

i S(V1,V2)Wj|ψ〉 = −miEiWj |ψ〉.

Again, we have used that SV ′

i S(V1,V2) stabilizes the code.

Reciprocally, suppose that A = SV S(V1,V2) can be used as a decoding CWS observ-
able. Using SVEi = miEiS

V , where mi = ±1, and repeating the commuting process,
we have

1. if Ei commutes with both SV1 and SV2 , then

AEiWj|ψ〉 = SV S(V1,V2)EiWj |ψ〉 = miEiS
V+F (Ei)S(V1,V2)Wj |ψ〉

where F (Ei) = (0, . . . , 0).

6

2. If Ei does not commute with SV1 or SV2 , then

AEiWj|ψ〉 = SV S(V1,V2)EiWj |ψ〉 = −miEiS
V+F (Ei)S(V1,V2)Wj|ψ〉.

We are assuming that A can be used as a decoding CWS observable. In both cases, we
have

AEiWj |ψ〉 = EiWj |ψ〉, ∀j

or

AEiWj|ψ〉 = −EiWj|ψ〉, ∀j.

This implies that SV+F (Ei)S(V1,V2) stabilizes the code for all i, and by Prop. 2 there is
a solution V ′

i of Eq. (5) such that V + F (Ei) = V ′
i for all i.

Theo. 2 allows us to make an exhaustive search for type-4 decoding observables
using expression A = SV S(V1,V2). We have to consider all pairs (SV1 ,SV2) in S such that
V1 6= V2 and look for solutions of Eq. (5) for each pair. This process can be expensive.
Next corollary addresses a more efficient way to search the decoding observables by
restricting the search space to NS(E). In this case, some solutions may be lost.

Corollary 1. Let E = {Ei}
T
i=1 be a set of correctable errors of a CWS code in standard

form and NS(E) the normalizer of E in S. If A = SV S(V1,V2) is a type-4 observable,
where SV1 ,SV2 ∈ NS(E) and V is a solution of Eq. (5), then A is a decoding observable
for the CWS code.

Proof. If both SV1 and SV2 are in NS(E), then F (Ei) = (0, . . . , 0) for all i, and Theo. 2
implies that V = Vi, where Vi is a solution of Eq. (5).

Corollary 1 helps us to build a procedure to find type-4 decoding observables, which
we describe now.

Procedure 1. Let E = {Ei} be the set of correctable errors and W = {Wj} the set of
codeword operators.

1. Find independent generators of NS(W).

2. Measure the generators. For each sequence of measurement results, there is set
E ′, subset of E, of errors that were not detected by the measurements.

3. For each E ′ do

(a) Find all elements in group NS(E
′).

(b) Take pairs (SV1 ,SV2) in NS(E
′) such that V1 6= V2 until finding a solution V

of Eq. (5) that distinguishes some errors in E ′. This step may split E ′ into
smaller subsets.

(c) Repeat Step (a) and (b) with smaller subsets as many times as needed until
distinguishing Pauli errors in E ′.

7

To find generators of NS(W) in Step 1, we employ the commuting relations

ZCiSOj = (−1)〈Ci,Oj〉SOjZCi (7)

to show that SOj ∈ NS(W) if and only if 〈Ci, Oj〉 = 0 for all i. This implies that Oj

must be in the kernel of matrix C, described in Eq. (6). The independent generators
for NS(W) are obtained from a basis of the kernel of C.

To find all elements in NS(E
′) in Step 3(a), we convert the errors in E ′ to classical

words by using function ClS and build a new matrix. The kernel of this matrix is
in one-to-one correspondence to the elements of NS(E

′). Each pair (SV1 ,SV2) and a
solution V of Eq. (5) provides a non-Pauli observable for errors in E ′. Step 3 can be
improved by testing whether each non-Pauli observable can be used for other sets E ′

generated is Step 2.

4 Example

In this section, we employ Procedure 1 to find the decoding observables for the ((10, 20, 3))
code, described by Cross et al. [20]. This code is based on the double ring graph, with
the following generators:

s1 = XZIIZZIIII s6 = ZIIIIXZIIZ

s2 = ZXZIIIZIII s7 = IZIIIZXZII

s3 = IZXZIIIZII s8 = IIZIIIZXZI

s4 = IIZXZIIIZI s9 = IIIZIIIZXZ

s5 = ZIIZXIIIIZ s10 = IIIIZZIIZX

The associated classical codewords are

0000000000 1001100100 1001101111 0101100000
0000101001 1100101101 0111011011 0111010000
1011011111 1110010110 1100000100 1101111110
1111000101 0101101011 0001111010 0010010010
0010111011 1011010100 0011000001 1110111111

In Step 1 of Procedure 1, we have to find generators for NS(W). This is accom-
plished by finding a basis (O) for the kernel of matrix C, described in Eq. (6). In
this example, this basis is given in Table 1. Then, the generators of NS(W) are Pauli
observables SO1 , SO2 , SO3 , SO4 . In Step 2, they are measured one at a time. The
results are displayed as signs ± on the top of subtables in Fig. 1. For example, if the
results of measuring these Pauli observables are + + +−, only two Pauli errors were
not detected, namely, Y2 and Z1. E

′ is {Y2, Z1} in this case.

Table 1: Decoding observables (Pauli type — SOi) for the ((10,20,3)) code.
O1 O2 O3 O4

0001110011 0010011001 0100111110 1000000100

In Step 3 of Procedure 1, we obtain the first non-Pauli observable, A1 in Table 2,
when E ′ = {Y2, Z1} . In this case, Step 3(a) is used only one time, because observable

8

A1 distinguishes all errors in E ′. Note that we can verify whether A1 can be used for
others E ′. In this example, A1 can be used 4 times, as can be seen in Fig. 1. The next
set will be E ′ = {X4, Z3}.

Table 2: Decoding observables (non-Pauli) for the ((10,20,3)) code. They are type-4
observables described by A = SV S(V1,V2) (see Eq. (2)).

V V1 V2
A1 0000111001 0000100001 0001000011

A2 0000111001 0000100010 0001000000

A3 0000010001 0000000011 0000010010

A4 0000110000 0000011000 0000100010

A5 0000111001 0000011011 0000101011

A6 0000111001 0000011000 0001000000

A7 0000111001 0000110000 0010000010

At the end, we obtain seven type-4 decoding observables, which are listed in Table 2.
The form of those observables is given by SV S(V1,V2), which is described in Eq. (2). To
decide which observable must be measured, we have to analyze Fig. 1. Note that it
is enough to measure one non-Pauli observable for this code. We have not put the
result ++++ in the list of subtables, because it is trivial — only the identity operator
appears in this case.

Figure 1: Results of the measurements of the decoding observables. The signs on the
top of each subtable describe the results of measuring Pauli observables of Table 1.
The measurement of non-Pauli observables is conditioned by the results of measuring
Pauli observables.

+ + +−

Y2 Z1

A1 − +

++−+

Y10 Z2

A1 − +

++−−

X2 Z8

A1 − +

−−−−

X7 Y5
A1 + −

+−++

X4 Z3

A2 − +

−−−+

X10 Z6

A2 + −

−++−

X3 Y7
A3 + −

−−+−

Y9 Y3
A3 − +

+−+−

X5 Y6
A4 + −

−−++

Z10 Y4
A4 + −

−+++

X8 Z4

A5 − +

−+−−

X6 Y8
A5 + −

−+−+

Z9 Z5

A6 + −

+−−+

X1 Z7

A7 + −

+−−−

X9 Y1
A7 − +

5 Conclusions

In this work, we have established two results on the existence and form of type-4
decoding observables for CWS codes, namely, Theo. 2 and Corollary 1. Those non-
Pauli observables are necessary in non-stabilizer CWS codes. We have described a

9

procedure to obtain those observables, which has better chances to succeed when the
CWS code is close to a stabilizer code. The standard procedure is to start measuring a
list of Pauli observables that stabilizes the code. In the next step, we search for type-4
decoding observables in the search space described by Corollary 1.

The procedure does not succeed for all CWS codes, and it is interesting to un-
derstand why it fails for some of them. In those cases, is it possible to use type-i
observables, with i > 4 as decoding observables? For example, the ((10, 18, 3)) code
described in Ref. [20] cannot be decoded by type-4 observables.

It is also interesting to study methods, perhaps in family of codes, to obtain the
non-Pauli observables in a straightforward way, with less exhaustive search by reducing
the search space and to compare with the general method proposed in Ref. [18].

Acknowledgements

We acknowledge CNPq’s financial support

References

[1] P. Shor, “Algorithms for quantum computation: discrete logarithms and factor-
ing,” in Foundations of Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on, pp. 124 –134, nov 1994.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the twenty-eighth annual ACM symposium on Theory of computing,
STOC ’96, (New York, NY, USA), pp. 212–219, ACM, 1996.

[3] M. Mosca, “Quantum algorithms,” in Encyclopedia of Complexity and Systems
Science, pp. 7088–7118, 2009.

[4] A. M. Childs and W. van Dam, “Quantum algorithms for algebraic problems,”
Rev. Mod. Phys., vol. 82, pp. 1–52, Jan 2010.

[5] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting codes exist,”
Phys. Rev. A, vol. 54, pp. 1098–1105, Aug 1996.

[6] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, “Mixed-state
entanglement and quantum error correction,” Phys. Rev. A, vol. 54, pp. 3824–3851,
Nov 1996.

[7] A. M. Steane, “Simple quantum error-correcting codes,” Phys. Rev. A, vol. 54,
pp. 4741–4751, Dec 1996.

[8] E. Knill and R. Laflamme, “Theory of quantum error-correcting codes,” Phys.
Rev. A, vol. 55, pp. 900–911, Feb 1997.

[9] D. Gottesman, “Class of quantum error-correcting codes saturating the quantum
hamming bound,” Phys. Rev. A, vol. 54, pp. 1862–1868, Sep 1996.

10

[10] D. Gottesman, Stabilizer codes and quantum error correction. PhD thesis, Cali-
fornia Institute of Technology, 1997.

[11] A. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane, “Quantum error
correction and orthogonal geometry,” Phys. Rev. Lett., vol. 78, pp. 405–408, Jan
1997.

[12] J. A. Smolin, G. Smith, and S. Wehner, “Simple family of nonadditive quantum
codes,” Phys. Rev. Lett., vol. 99, p. 130505, Sep 2007.

[13] S. Yu, Q. Chen, C. H. Lai, and C. H. Oh, “Nonadditive quantum error-correcting
code,” Phys. Rev. Lett., vol. 101, p. 090501, Aug 2008.

[14] A. Cross, G. Smith, J. Smolin, and B. Zeng, “Codeword stabilized quantum
codes,” in Information Theory, 2008. ISIT 2008. IEEE International Symposium
on, pp. 364 –368, july 2008.

[15] X. Chen, B. Zeng, and I. L. Chuang, “Nonbinary codeword-stabilized quantum
codes,” Phys. Rev. A, vol. 78, p. 062315, Dec 2008.

[16] I. Chuang, A. Cross, G. Smith, J. Smolin, and B. Zeng, “Codeword stabilized quan-
tum codes: Algorithm and structure,” Journal of Mathematical Physics, vol. 50,
no. 4, p. 042109, 2009.

[17] S. Yu, Q. Chen, and C. H. Oh, “Two infinite families of nonadditive quantum
error-correcting codes,” ArXiv e-prints, Jan. 2009.

[18] Y. Li, I. Dumer, M. Grassl, and L. P. Pryadko, “Structured error recovery for
code-word-stabilized quantum codes,” Phys. Rev. A, vol. 81, p. 052337, May 2010.

[19] N. Melo, D. F. G. Santiago, and R. Portugal, “Decoder for Nonbinary CWS Quan-
tum Codes,” ArXiv e-prints, Apr. 2012.

[20] A. Cross, G. Smith, J. A. Smolin, and B. Zeng, “Codeword stabilized quantum
codes,” IEEE Trans. Inf. Theor., vol. 55, pp. 433–438, Jan. 2009.

11

	1 Introduction
	2 CWS codes
	3 Main Results
	4 Example
	5 Conclusions

