Skip to main content
Log in

Efficient entanglement concentration for quantum dot and optical microcavities systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A recent paper (Chuan Wang in Phys Rev A 86:012323, 2012) discussed an entanglement concentration protocol (ECP) for partially entangled electrons using a quantum dot and microcavity coupled system. In his paper, each two-electron spin system in a partially entangled state can be concentrated with the assistance of an ancillary quantum dot and a single photon. In this paper, we will present an efficient ECP for such entangled electrons with the help of only one single photon. Compared with the protocol of Wang, the most significant advantage is that during the whole ECP, the single photon only needs to pass through one microcavity which will increase the total success probability if the cavity is imperfect. The whole protocol can be repeated to get a higher success probability. With the feasible technology, this protocol may be useful in current long-distance quantum communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Gisin N., Ribordy G., Tittel W., Zbinden H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  3. Ekert A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Hillery M., Bužek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Karlsson A., Koashi M., Imoto N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  7. Xiao L., Long G.L., Deng F.G., Pan J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  8. Long G.L., Liu X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  9. Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  10. Wang C., Deng F.G., Li Y.S., Liu X.S., Long G. L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  11. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Bennett C.H., Bernstein H.J., Popescu S., Schumacher B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  13. Bose S., Vedral V., Knight P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  14. Shi B.S., Jiang Y.K., Guo G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  15. Zhao Z., Pan J.W., Zhan M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  16. Yamamoto T., Koashi M., Imoto N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  17. Sheng Y.B., Deng F.G., Zhou H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  18. Sheng Y.B., Deng F.G., Zhou H.Y.: Single-photon entanglement concentration for long distance quantum communication. Quant. Inf. Comput. 10, 272 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Sheng Y.B., Zhou L., Zhao S.M., Zheng B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  20. Sheng Y.B., Zhou L., Zhao S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012)

    Google Scholar 

  21. Wang C., Zhang Y., Jin G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  22. Wang C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  23. Deng F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  24. Wang H.F., Sun L.L., Zhang S., Yeon K.H.: Scheme for entanglement concentration of unkonwn partially entangled three-atom W states in cavity QED. Quantum Inf. Process. 11, 431 (2012)

    Article  MATH  Google Scholar 

  25. Beenakker C.W.J., Divincenzo D.P., Emary C., Kindermann M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  26. Waks E., Vuckovic J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  Google Scholar 

  27. Bonato C., Haupt F., Oemrawsingh S.S.R., Gudat J., Ding D., van Exter M.P., Bouwmeester D.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    Article  ADS  Google Scholar 

  28. Wang T.J., Song S.Y., Long G.L.: Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities. Phys. Rev. A 85, 062311 (2012)

    Article  Google Scholar 

  29. Hu C.Y., Munro W. J., Rarity J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  30. Hu C.Y., Munro W.J., ÓBrien J.L., Rarity J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    Article  ADS  Google Scholar 

  31. Hu C.Y., Young A., ÓBrien J.L., Munro W.J., Rarity J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  32. Hu C.Y., Rarity J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    Article  ADS  Google Scholar 

  33. Xu X., Yao W., Sun B., Steel D.G., Bracker A.S., Gammon D., Sham L.J.: A Jurassic ceratosaur from China helps clarify avian digital homologies. Nature(London) 459, 940 (2009)

    Article  ADS  Google Scholar 

  34. Wang, C., Zhang, R., Zhang, Y., Ma, H.Q: Multipartite electronic entanglement purification using quantum-dot and microcavity system. Quantum Inf. Process.(2012). doi:10.1007/s11128-012-0397-4

  35. Li, T., Ren, B.C., Wei, H.R., Hua, M., Deng, F.G.: High-efficiency multipartite entanglement purification of electron-spin states with charge detection. Quantum Inf. Process.(2012). doi:10.10007/s11128-012-0427-2

  36. Reithmaier J. P., LöfflerG. Sek A., Hofmann C., Kuhn S., Eitzenstein S. R., Keldysh L. V., Kulakovskii V. D., Reinecke T.L., Forchel A.: Strong coupling in a single quantum dot-semiconductor microcavity system. Nature (London) 432, 197 (2004)

    Article  ADS  Google Scholar 

  37. Yoshie T., Scherer A., Hendrickson J., Khitrova G., Gibbs H. M., Rupper G., Ell C., Shchekin O. B., Deppe D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature (London) 432, 200 (2004)

    Article  ADS  Google Scholar 

  38. Peter E., Senellart P., Martrou D., Lemaître A., Hours J., GérardJ. M., Bloch J.: Exciton-photon strong-coupling regime for a single quantum dot eEmbedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, YB., Zhou, L., Wang, L. et al. Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf Process 12, 1885–1895 (2013). https://doi.org/10.1007/s11128-012-0502-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0502-8

Keywords

Navigation