Skip to main content
Log in

Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, a quantum private comparison (QPC) protocol with a dishonest third party (TP) (Yang et al. in Quantum Inf Process, 2012. doi:10.1007/s11128-012-0433-4) was proposed, which pointed out that the assumption of semi-honest third party (TP) is unreasonable. Here we find this protocol is not so secure as it was expected, and then we give some improvement strategies, which ensure that both players’ secrets will not be leaked to anyone. We also discuss the assumption for TP in QPC protocls, which gives a constructive suggestions for the design of a new QPC protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, IEEE, New York, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1389–1390 (2011)

    ADS  Google Scholar 

  5. Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  8. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  9. Zhang, W.-W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0423-6

  10. Yao, A.C.: Protocols for secure computations. In: Proceedings of 23rd IEEE Symposium on Foundations of Computer Science (FOCS’ 82), Washington, DC, USA, pp. 160 (1982)

  11. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discret. Appl. Math. (special issue on coding and cryptology) 111(1–2), 23–36 (2001)

    Google Scholar 

  12. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154–1162 (1997)

    Article  ADS  Google Scholar 

  13. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  14. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009)

    Article  ADS  Google Scholar 

  15. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284, 545–549 (2011)

    Article  ADS  Google Scholar 

  16. Liu, W., Wang, Y.-B., Cui, W.: Quantum private comparison protocol based on Bell entangled states. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Chen, X.-B., Gang, X., Niu, X.-X., Wen, Q.-Y., Yang, Y.-X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283, 1561–1565 (2010)

    Article  ADS  Google Scholar 

  18. Liu, W., Wang, Y.-B., Jiang, Z.-T.: An efficient protocol for the quantum private comparison of equality with W state. Opt. Commun. 284, 3160–3163 (2011)

    Article  ADS  Google Scholar 

  19. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z.: A protocol for the quantum private comparison of equality with W state. Int. J. Theor. Phys. 51, 69–77 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, W., Wang, Y.-B., Jiang, Z.-T., Cao, Y.-Z., Cui, W.: New quantum private comparison protocol using W state. Int. J. Theor. Phys. 51, 1953–1960 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, W., Wang, Y.-B.: Quantum private comparison based on GHZ entangled states. Int. J. Theor. Phys. doi:10.1007/s10773-012-1246-z

  22. Jia, H.-Y., Wen, Q.-Y., Li, Y.-B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51, 1187–1194 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Liu, B., Gao, F., Jia, H.-Y., Huang, W., Zhang, W.-W., Wen, Q.-Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0439-y

  24. Tseng, H.-Y., Lin, J., Hwang, T.: New quantum private comparison protocol using EPR pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yang, Y.-G., Xia, J., Jia, X., Zhang, H.: Comment on “Quantum private comparison protocols with a semi-honest third party”. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0433-4

  26. Lo, H., Ko, T.: Some attacks on quantum-based cryptographic protocols. Quantum Inf. Comput. 5, 41 (2005)

    MathSciNet  Google Scholar 

  27. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  28. Zhang, Y.S., Li, C.F., Guo, G.C.: Comment on “Quantum key distribution without alternative measurements”. Phys. Rev. A 63, 036301 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  29. Gao, F., Qin, S., Wen, Q., Zhu, F.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329 (2007)

    MATH  MathSciNet  Google Scholar 

  30. Gao, F., Wen, Q., Zhu, F.: Teleportation attack on the QSDC protocol with a random basis and order. Chin. Phys. B 17, 3189 (2008)

    Article  ADS  Google Scholar 

  31. Gao, F., Qin, S., Guo, F., Wen, Q.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47, 630 (2011)

    Article  ADS  Google Scholar 

  32. Hao, L., Li, J., Long, G.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491 (2010)

    Article  ADS  Google Scholar 

  33. Qin, S., Gao, F., Wen, Q., Zhu, F.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357, 101 (2006)

    Article  ADS  MATH  Google Scholar 

  34. Wójcik, A.: Eavesdropping on the “Ping-Pong” quantum communication protocol. Phys. Rev. Lett. 90, 157901 (2003)

    Article  ADS  Google Scholar 

  35. Wójcik, A.: Comment on “Quantum dense key distribution”. Phys. Rev. A 71, 016301 (2005)

    Article  ADS  Google Scholar 

  36. Cai, Q.Y.: The “Ping-Pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91, 109801 (2003)

    Article  ADS  Google Scholar 

  37. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Consistency of shared reference frames should be reexamined. Phys. Rev. A 77, 014302 (2008)

    Article  ADS  Google Scholar 

  38. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam” [Phys. Lett. A 350, 174 (2006)]. Phys. Lett. A, 360, 748 (2007)

  39. Gao, F., Lin, S., Wen, Q.Y., Zhu, F.: A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin. Phys. Lett. 25, 1561 (2008)

    Article  ADS  Google Scholar 

  40. Gao, F., Qin, S., Wen, Q., Zhu, F.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  41. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum- key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Google Scholar 

  42. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  43. Qin, S.J., Gao, F., Wen, Q.Y., et al.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  44. Song, T.T., Zhang, J., Gao, F., et al.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B 18, 1333 (2009)

    Article  ADS  Google Scholar 

  45. Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by NSFC (Grant Nos. 61170270, 61100203, 60903152, 61003286, 61121061), NCET (Grant No. NCET-10-0260), SRFDP (Grant No. 20090005110010), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant Nos. BUPT2011YB01, BUPT2011RC0505, 2011PTB-00-29, 2011RCZJ15, 2012RC0612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Wei Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WW., Zhang, KJ. Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf Process 12, 1981–1990 (2013). https://doi.org/10.1007/s11128-012-0507-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0507-3

Keywords

Navigation