Skip to main content
Log in

Efficient entanglement concentration for electron-spin W state with the charge detection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present two entanglement concentration protocols (ECPs) for arbitrary three-electron W state based on their charges and spins. Different from other ECPs, with the help of the electronic polarization beam splitter and charge detection, the less-entangled W state can be concentrated into a maximally entangled state only with some single charge qubits. The second ECP is more optimal than the first one, for by constructing the complete parity check gate, the second ECP can be used repeatedly to further concentrate the less-entangled state and obtain a higher success probability. Therefore, both the ECPs especially the second one may be useful in current quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Liu, X.S., Long, G.L., Tong, D.M., Feng, L.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  6. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  8. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Hillery, M., Buz̆ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  11. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Google Scholar 

  13. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  14. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  15. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067 (2001)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Google Scholar 

  17. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  18. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  19. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  20. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  21. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  22. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  23. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long distance quantum communication. Quantum Inf. Comput. 10, 272 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  25. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  26. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. (2012). doi:10.1007/s11128-012-0472-x

  27. Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. (2012). Quantum Inf. Process. doi:10.1007/s11128-012-0502-8

  28. Cao, Z.L., Yang, M.: Entanglement distillation for three-particle W class states. J. Phys. B 36, 4245 (2003)

    Article  ADS  Google Scholar 

  29. Zhang, L.H., Yang, M., Cao, Z.L.: Entanglement concentration for unknown W class states. Phys. A 374, 611 (2007)

    Article  Google Scholar 

  30. Wang, H.F., Zhang, S., Yeon, K.H.: Linear optical scheme for entanglement concentration of two partially entangled three-photon W states. Eur. Phys. J. D 56, 271 (2010)

    Article  ADS  Google Scholar 

  31. Yildiz, A.: Optimal distillation of three-qubit W states. Phys. Rev. A 82, 012317 (2010)

    Article  ADS  Google Scholar 

  32. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012)

    Google Scholar 

  33. Gu, B.: Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. J. Opt. Soc. Am. B 7, 1685–1689 (2012)

    Article  ADS  Google Scholar 

  34. Du, F.F., Li, T., Ren, B.C., Wei, H.R., Deng, F.G.: Single-photon-assisted entanglement concentration of a multi-photon system in a partially entangled W state with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1399 (2012)

    Article  ADS  Google Scholar 

  35. Ren, B.C., Hua, M., Li, T., Du, F.F., Deng, F.G.: Multipartite entanglement concentration of electron-spin states with CNOT gates. Chin. Phys. B 21, 090303 (2012)

    Article  ADS  Google Scholar 

  36. Beenakker, C.W.J., DiVincenzo, D.P., Tmary, C., Kindermann, M.: Charge detection enables free-electron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  37. Terhal, B.M., DiVincenzo, D.P.: Classical simulation of noninteracting-fermion quantum circuits. Phys. Rev. A 65, 032325 (2002)

    Article  ADS  Google Scholar 

  38. Zhang, X.L., Feng, M., Gao, K.L.: Cluster-state preparation and multipartite entanglement analyzer with fermions. Phys. Rev. A 73, 014301 (2006)

    Article  ADS  Google Scholar 

  39. Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71, 064301 (2005)

    Article  ADS  Google Scholar 

  40. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement concentration for electrons with charge detection. Phys. Lett. A 373, 1823 (2009)

    Article  ADS  MATH  Google Scholar 

  41. Sheng, Y.B., Deng, F.G., Long, G.L.: Multipartite electronic entanglement purification with charge detection. Phys. Lett. A 375, 396 (2010)

    Article  ADS  Google Scholar 

  42. Li, T., Ren, B.C., Wei, H.R., Hua, M., Deng, F.G.: High-efficiency multipartite entanglement purification of electron-spin states with charge detection. Quantum Inf. Precess. (2012). doi:10.1007/s11128-012-0427-2

  43. Wang, C., Zhang, Y., Ma, H.Q.: Multipartite electronic entanglement purification using quantum-dot spin and microcavity system. Quantum Inf. Precess. (2012). doi:10.1007/s11128-012-0397-4

  44. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  45. Trauzettel, B., Jordan, A.N., Beenakker, C.W.J., Büttiker, M.: Parity meter for charge qubits: an efficient quantum entangler. Phys. Rev. B 73, 235331 (2006)

    Article  ADS  Google Scholar 

  46. Zilberberg, O., Braunecker, B., Loss, D.: Controlled-NOT gate for multiparticle qubits and topological quantum computation based on parity measurements. Phys. Rev. A 77, 012327 (2008)

    Article  ADS  Google Scholar 

  47. Ionicioiu, R.: Entangling spins by measuring charge: a parity-gate toolbox. Phys. Rev. A 75, 032339 (2007)

    Article  ADS  Google Scholar 

  48. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    Article  ADS  Google Scholar 

  49. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    Article  ADS  Google Scholar 

  50. Hu, C.Y., Munro, W.J., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    Article  ADS  Google Scholar 

  51. Elzerman, J.M., Hanson, R., Willems van Beveren, L.H., Vandersypen, L.M.K., Kouwenhoven, L.P.: Excited-state spectroscopy on a nearly closed quantum dot via charge detection. Appl. Phys. Lett. 84, 4617 (2004)

    Article  ADS  Google Scholar 

  52. Field, M., Smith, C.G., Pepper, M., Ritchie, D.A., Frost, J.E.F., Jones, G.A.C., Hasko, D.G.: Measurements of Coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311 (1993)

    Article  ADS  Google Scholar 

  53. Mao, W., Averin, D.V., Ruskov, R., Korotkov, A.N.: Mesoscopic quadratic quantum measurements. Phys. Rev. Lett. 93, 056803 (2004)

    Article  ADS  Google Scholar 

  54. Ionicioiu, R., D’Amico, I.: Mesoscopic Stern-Gerlach device to polarize spin currents. Phys. Rev. B 67, 041307(R) (2003)

    Article  ADS  Google Scholar 

  55. Popescu, A.E., Ionicioiu, R.: All-electrical quantum computation with mobile spin qubits. Phys. Rev. B 69, 245422 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant no. 11104159, Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics Scientific, Tsinghua University, Open Research Fund Program of National Laboratory of Solid State Microstructures under Grant No. M25020 and M25022, A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L. Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf Process 12, 2087–2101 (2013). https://doi.org/10.1007/s11128-012-0511-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0511-7

Keywords

Navigation