Skip to main content
Log in

Realization of nondestructive multi-atom cluster state analyzer via the cavity input–output process

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose a deterministic scheme to realize four-atom and five-atom cluster state analyzers based on the cavity input–output process. In the scheme, we construct a multi-qubit parity analyzer and two cluster state phase analyzers and show that all the orthogonal multi-atom cluster states can be completely identified in a nondestructive way by combining these two kinds of analyzers. The fidelities of analyzers are also calculated, which show that our scheme has a high performance in the intermediate coupling region. Furthermore, the scheme opens promising perspectives for large-scale Bell-state-measurement-based and cluster-state-measurement-based quantum communication and quantum information processing networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootter, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  6. Xiao, L., Long, G.L., Deng, F.G., Pan, P.J.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  7. Engel, H.A., Loss, D.: Fermionic Bell-state analyzer for spin qubits. Science 309, 586–588 (2005)

    Article  ADS  Google Scholar 

  8. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71, 060302 (2005)

    Article  ADS  Google Scholar 

  9. Zhang, X.L., Feng, F., Gao, K.L.: Cluster-state preparation and multipartite entanglement analyzer with fermions. Phys. Rev. A 73, 014301 (2006)

    Article  ADS  Google Scholar 

  10. Guo, Q., Bai, J., Cheng, L.Y., Shao, X.Q., Wang, H.F., Zhang, S.: Simplified optical quantum-information processing via weak cross-Kerr nonlinearities. Phys. Rev. A 83, 054303 (2011)

    Article  ADS  Google Scholar 

  11. Pan, J.W., Zeilinger, A.: Greenberger-Horne-Zeilinger-state analyzer. Phys. Rev. A 57, 2208 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  12. Qian, J., Feng, X.L., Gong, S.Q.: Universal Greenberger-Horne-Zeilinger-state analyzer based on two-photon polarization parity detection. Phys. Rev. A 72, 052308 (2005)

    Article  ADS  Google Scholar 

  13. Qian, J., Qian, Y., Feng, X.L., Yang, T., Gong, S.Q.: Generation and discrimination of Greenberger-Horne-Zeilinger states using dipole-induced transparency in a cavity-waveguide system. Phys. Rev. A 75, 032309 (2007)

    Article  ADS  Google Scholar 

  14. Lin, X.M., Chen, Z.H., Lin, G.W., Chen, X.D., Ni, B.B.: Optical Bell state and Greenberger-Horne-Zeilinger-state analyzers through the cavity input-output process. Opt. Commun. 282, 3371–3374 (2009)

    Article  ADS  Google Scholar 

  15. Guo, Q., Cheng, L.Y., Wang, H.F., Zhang, S., Yeon, K.H.: Complete N-photon Greenberger-Horne-Zeilinger-state analyzer and its applications to quantum communication. Opt. Commun. 285, 1571–1575 (2012)

    Article  ADS  Google Scholar 

  16. Zhu, L., Wang, H.F., Su, S.L., Guo, Q., Sun, L.L., Zhang, S.: Nondestructive N-atom Greenberger-Horne-Zeilinger state analyzer via the cavity input output–process. J. Opt. Soc. Am. B 29, 2156–2160 (2012)

    Article  ADS  Google Scholar 

  17. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  18. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619–632 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Muralidharan, S., Jain, S., Prasath, S., Panigrahi, P.K.: Non-destructive discrimination of multiparticle cluster states for quantum computation. arXiv:quant-ph/0906.2147

  20. Yu, C.S., Yi, X.X., Song, H.S., Mei, D.: Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms. Phys. Rev. A 75, 044301 (2007)

    Article  ADS  Google Scholar 

  21. Lin, X.M., Xue, P., Chen, M.Y., Chen, Z.H., Li, X.H.: Scalable preparation of multiple-particle entangled states via the cavity input-output process. Phys. Rev. A 74, 052339 (2006)

    Article  ADS  Google Scholar 

  22. Duan, L.M., Kuzmich, A., Kimble, H.J.: Cavity QED and quantum-information processing with hot trapped atoms. Phys. Rev. A 67, 032305 (2003)

    Article  ADS  Google Scholar 

  23. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  24. Mei, F., Yu, Y.F., Feng, X.L., Zhu, S.L., Zhang, Z.M.: Optical quantum computation with cavities in the intermediate coupling region. Europhys. Lett. 91, 10001 (2010)

    Article  ADS  Google Scholar 

  25. Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    Article  ADS  Google Scholar 

  26. Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    Article  ADS  Google Scholar 

  27. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  28. Mei, F., Feng, M., Yu, Y.F., Zhang, Z.M.: Scalable quantum information processing with atomic ensembles and flying photons. Phys. Rev. A 80, 042319 (2009)

    Article  ADS  Google Scholar 

  29. Chen, Q., Feng, M.: Quantum gating on neutral atoms in low- Q cavities by a single-photon input-output process. Phys. Rev. A 79, 064304 (2009)

    Article  ADS  Google Scholar 

  30. Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P., Vučković, J.: Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008)

    Article  ADS  Google Scholar 

  31. Mei, F., Yu, Y.F., Feng, X.L., Zhang, Z.M., Oh, C.H.: Quantum entanglement distribution with hybrid parity gate. Phys. Rev. A 82, 052315 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 61068001 and 11264042; China Postdoctoral Science Foundation under Grant No. 2012M520612; and the Talent Program of Yanbian University of China under Grant No. 950010001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shou Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, L., Su, SL., Guo, Q. et al. Realization of nondestructive multi-atom cluster state analyzer via the cavity input–output process. Quantum Inf Process 12, 2749–2763 (2013). https://doi.org/10.1007/s11128-013-0556-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0556-2

Keywords

Navigation