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Abstract We present an inequality for detecting entanglement and distillability of ar-

bitrary dimensional bipartite systems. This inequality provides a sufficient condition of

entanglement for bipartite mixed states, and a necessary and sufficient condition of en-

tanglement for bipartite pure states. Moreover, the inequality also gives a necessary and

sufficient condition for distillability.
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I. INTRODUCTION

Entanglement is one of the most fascinating features of quantum theory and has numerous

applications in quantum information processing [1]. As a result, various approaches have

been proposed and many significant conclusions have been derived in detecting entanglement

[2–13]. However there are yet no operational necessary and sufficient separability criteria

for general higher dimensional quantum states. In particular, experimental detection of

quantum entanglement by measuring some suitable quantum mechanical observables has

practical importance. The Bell inequalities can be used to detect perfectly the entanglement

of pure bipartite states [14–18]. Besides Bell inequalities, the entanglement witness could

also be used for experimental detection of quantum entanglement for some special states

[4, 19, 20], which could give rise to entanglement estimation [21]. The two-copy measurement

of concurrence for two-qubit pure states has been already realized experimentally [22–24].

For arbitrary dimensional bipartite pure states, one method of measuring concurrence has

been presented in terms of one-copy measurement [25]. Except that, uncertainty relations

are also favorable in entanglement detection, for instance, one separability condition has

been derived for all negative partial transpose state in experimentally accessible forms [26].

For bipartite mixed states, a necessary and sufficient inequality has been derived for

detecting entanglement of two-qubit states [27]. In Ref. [28] based on a different approach,
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an inequality is presented, which is both necessary and sufficient in detecting entanglement

of qubit-qutrit states, and necessary for qubit-qudit states.

In this article we propose an inequality detecting entanglement for arbitrary dimensional

bipartite states, which consists of local observables with measurement outcomes ±1. This

inequality gives a necessary condition of separability for mixed states, namely, any violation

of the inequality implies entanglement. It is shown that our inequality can detect entangle-

ment of a wide class of states such as Horodecki’s state, isotropic state and Werner state.

For pure states, the inequality becomes both necessary and sufficient. All pure entangled

states violate it. Moreover, our inequality provides also a necessary and sufficient condition

for entanglement distillability, an approach to get the ideal resource from general quantum

mixed states for quantum information processing [29, 30].

The paper is organized as follows. In Sec. II, we first propose an inequality in terms

of the mean values of local observables. Then we prove that all separable states obey this

inequality and all pure entangled states violate it. As applications some detailed examples

are presented. We show then that the inequality is a necessary and sufficient condition for

distillability. Comments and conclusions are given in the last section.

II. INEQUALITY FOR ARBITRARY BIPARTITE SYSTEMS

Let Hm, Hn be m, n-dimensional vector spaces with {|i〉}m−1
i=0 and {|j〉}n−1

j=0 the compu-

tational basis respectively. Set λA0 = Im the m × m identity matrix, λAi = |0〉〈0| − |i〉〈i|,
µA1 = |0〉〈1|+|1〉〈0|, and µA2 = i|0〉〈1|−i|1〉〈0|, where |i〉 ∈ Hm, i = 1, · · · , m−1. Set λB0 = In

the n×n identity matrix, λBi = |0〉〈0|−|i〉〈i|, µB1 = |0〉〈1|+ |1〉〈0|, and µB2 = i|0〉〈1|− i|1〉〈0|,
where |i〉 ∈ Hn, i = 1, · · · , n − 1. Let Ai = UλAi U

†, i = 0, 1, · · · , m − 1, A′
j = UµAj U

†,

j = 1, 2, be a set of quantum mechanical observables acting on the first subsystem, with U

any m×m unitary matrix. Let Bi = V λBi V
†, i = 0, 1, · · · , n− 1, B′

j = V µBj V
†, j = 1, 2, be

a set of quantum mechanical observables acting on the second subsystem, with V any n×n

unitary matrix. Here Roman letter i represents the imaginary unit.

We define
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H
(m,n)
U,V =

1

mn

∑

i,j

(1− m

2
δi1 −

n

2
δj1)Ai ⊗ Bj;

P
(m,n)
U,V =

1

2m2n2

∑

i,j

(mδi1 − nδj1)Ai ⊗ Bj ;

Q
(m,n)
U,V =

1

16
(A′

1 ⊗B′
1 − A′

2 ⊗ B′
2),

(1)

where δkl = 1 if k = l and is zero otherwise. According to the mean values of the operators

in Eq. (1), we can construct an inequality detecting entanglement for m⊗ n systems.

Theorem 1 Any separable state ρ in Hm ⊗Hn obeys the following inequality

〈H(m,n)
U,V 〉2ρ ≥ 〈P (m,n)

U,V 〉2ρ + 〈Q(m,n)
U,V 〉2ρ (2)

for all m×m unitary matrix U and n× n unitary matrix V .

Proof. First we show that inequality (2) holds for all pure separable states, which is

equivalent to prove that for arbitrary pure separable state ρ, the following inequality holds:

〈H(m,n)
Im,In

〉2ρ ≥ 〈P (m,n)
Im,In

〉2ρ + 〈Q(m,n)
Im,In

〉2ρ. (3)

Note that any pure separable state can be written as |ξ〉 =
∑m−1

i=0

∑n−1
j=0 aibj |ij〉 with

∑m−1
i=0 |ai|2 =

∑n−1
j=0 |bj|2 = 1. Inserting this separable pure state ρ = |ξ〉〈ξ| into Eq. (3), one

gets that

〈H(m,n)
Im,In

〉|ξ〉〈ξ| =
1

2
(|a0b1|2 + |a1b0|2) ≥ 0. (4)

While the right hand side of inequality (3) becomes

〈P (m,n)
Im,In

〉2|ξ〉〈ξ| + 〈Q(m,n)
Im,In

〉2|ξ〉〈ξ| =
1

4
(|a0b1|2 − |a1b0|2)2 +Re(a0a

∗
1b0b

∗
1)

2. (5)

From Eqs. (4) and (5), it is easy to obtain that inequality (3) holds for any pure separable

states.

We now prove that inequality (2) also holds for general separable mixed states,

ρ =
∑

i

pi|ψi〉〈ψi|, 0 ≤ pi ≤ 1,
∑

i

pi = 1,

where |ψi〉 are all pure separable states. Denote

ci = 〈H(m,n)
U,V 〉|ψi〉〈ψi|;

di = 〈P (m,n)
U,V 〉|ψi〉〈ψi|;

ei = 〈Q(m,n)
U,V 〉|ψi〉〈ψi|.
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Since inequality (2) holds for all pure separable states, one has c2i ≥ d2i + e2i . Taking into

account that if the inequality c2i ≥ d2i + e2i holds for arbitrary real numbers di, ei and

nonnegative ci, i = 1, · · · , N , then (
∑N

i=1 pici)
2 ≥ (

∑N

i=1 pidi)
2 + (

∑N

i=1 piei)
2 for 0 ≤ pi ≤ 1

and
∑N

i=1 pi = 1, we know that any mixed separable state ρ obeys inequality (2).

This theorem shows that any violation of this inequality implies entanglement. Hence

it gives a sufficient condition of entanglement for arbitrary dimensional bipartite systems.

Next we prove that for the pure state case, one has that all pure entangled states violate

this inequality for some unitary U and V , so that the inequality provides a necessary and

sufficient condition for entanglement of pure states.

Theorem 2 A pure state in Hm ⊗ Hn is entangled if and only if it violates inequality (2)

for some unitary matrices U and V .

Proof. Here we only need to prove that any pure entangled state in Hm ⊗ Hn violates

inequality (2) for some unitary matrices U and V . Without loss of generality, we assume

m ≥ n. By Schmidt decomposition any entangled pure state |φ〉 can be transformed into

|φ′〉:

|φ′〉 = U † ⊗ V †|φ〉 =
n−1
∑

i=0

ai|ii〉, (6)

with a0 > 0, a1 > 0, and ai ≥ 0 for i = 2, · · · , n− 1,
∑n−1

i=0 |ai|2 = 1. Here U is an m ×m

unitary matrix and V is an n× n unitary matrix. Then from the PPT criterion [3, 4] there

exist nonzero real numbers a and b satisfying a2 + b2 = 1 and |ψ〉 = a|01〉+ b|10〉 such that

〈(|ψ〉〈ψ|)T1〉|φ′〉〈φ′| = 〈ψ|(|φ′〉〈φ′|)T1 |ψ〉 < 0.

By expanding the partial transposed matrix |ψ〉〈ψ|T1 according to the matrices {λAi }, {µAi },
{λBi } and {µBi } on the first and second subsystems respectively, we get
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〈(|ψ〉〈ψ|)T1〉|φ′〉〈φ′| (7)

=
1

mn
〈
∑

i,j 6=1

λi ⊗ λj +
∑

i,j

[(
−m+ 2

2
+
m

2

√
1− C2)δi1

+(
−n+ 2

2
− n

2

√
1− C2)δj1]λi ⊗ λj〉|φ′〉〈φ′| +

1

4
C〈µA1 ⊗ µB1 − µA2 ⊗ µB2 〉|φ′〉〈φ′|

≥ 〈H(m,n)
Im,In

〉|φ′〉〈φ′| −
∣

∣

∣

√
1− C2〈P (m,n)

Im,In
〉|φ′〉〈φ′| + C〈Q(m,n)

Im,In
〉|φ′〉〈φ′|

∣

∣

∣

≥ 〈H(m,n)
Im,In

〉|φ′〉〈φ′| −
(

〈P (m,n)
Im,In

〉2|φ′〉〈φ′| + 〈Q(m,n)
Im,In

〉2|φ′〉〈φ′|
)

1

2

= 〈H(m,n)
U,V 〉|φ〉〈φ| −

(

〈P (m,n)
U,V 〉2|φ〉〈φ| + 〈Q(m,n)

U,V 〉2|φ〉〈φ|
)

1

2

,

where C = 2ab is just the concurrence of the pure state |ψ〉, defined by C(|ψ〉) =
√

2(1− Trρ21). ρ1 is the reduced density matrix ρ1 = Tr2(|ψ〉〈ψ|), where Tr2 stands for the
partial trace with respect to the second subsystem. Here Ai = UλAi U

†, i = 0, 1, · · · , m− 1,

A′
j = UµAj U

†, j = 1, 2, Bi = V λBi V
†, i = 0, 1, · · · , n−1, B′

j = V µBj V
†, j = 1, 2. U and V are

just the unitary matrices from the Schmidt decomposition in Eq. (6). The first inequality

is due to −|x| ≤ x and the second one is from the Cauchy inequality. Since the left hand

side of (7) is negative, we have that the pure entangled state |φ〉 violates inequality (2) with

respect to the corresponding observables.

Therefore any pure state |ψ〉 in Hm ⊗ Hn is separable if and only if inequality (2) is

satisfied. Inequality (2) gives a necessary and sufficient criterion for the separability of

pure states, which may be determined by experimental measurements on the local observ-

ables. For example, for pure entangled state |φ′〉 defined above, it violates inequality (3)

corresponding to U = Im and V = In in inequality (2).

In fact for pure bipartite states there are already many Bell inequalities like Refs. [15, 18]

in terms of the expectation of the local observables and Refs. [16, 17] in terms of probabilities

for d ⊗ d systems. Inequality (2) is for arbitrary dimensional pure bipartite systems, no

matter whether the dimensions of the two subsystems are the same or not. Moreover, it also

provides sufficient condition for entanglement of mixed states.

Inequality (2) can be associated with nonlinear entanglement witness operators, where the

violation is replaced by a negative expectation value. In fact, for given U and V , inequality

(2) gives rise to a kind of nonlinear entanglement witness W
(m,n)
U,V :

〈W (m,n)
U,V 〉ρ ≡ 〈H(m,n)

U,V 〉2ρ − (〈P (m,n)
U,V 〉2ρ + 〈Q(m,n)

U,V 〉2ρ).
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For all separable states σ, 〈W (m,n)
U,V 〉σ ≥ 0. If 〈W (m,n)

U,V 〉ρ < 0 then ρ is entangled. As an

entanglement witness gives rise to a superface in the state space, dividing the space into a

set of entangled states and the rest, the detection of different entangled states depends on

the choice of different witnesses. Here different choices of U and V detect different sets of

entangled states.

Generally linear entanglement witness operators can be associated with positive maps

in terms of Jamiolkowski isomorphism. And positive maps could give rise to entanglement

linear witness operators, see e.g. [31]. Our inequality (2) is not linear, as many Bell-type

inequalities for mixed states [27, 28]. The entanglement witness operators deduced from the

inequality is also nonlinear. The direct relations between the entanglement witness operators

and the positive maps are not obvious.

Subsequently, we consider the maximal violation of inequality (2). Let F (m,n)(ρ) =

maxU,V {−〈W (m,n)
U,V 〉ρ, 0} denote the maximal violation value with respect to a given state

ρ, under all U and V . Then F (m,n)(ρ) = 0 if ρ is separable. Additionally, F (m,n)(ρ) is

invariant under the local unitary transformations.

From another point of view, inequality (2) can be viewed as the generalization of the

main result in Ref. [27] and Ref. [28]. For m = n = 2, inequality (2) becomes the one

in Ref. [27] which is necessary and sufficient in detecting entanglement for pure or mixed

states. For m = 2 and n = 3, inequality (2) is also the necessary and sufficient condition of

separability [28]. But for m > 3 or n > 3, this inequality is only necessary for separability

of mixed states, but necessary and sufficient for pure states. As is shown in Ref. [28], for

m = 2 the inequality can detect some PPT entanglement. In the following we give some

examples concerning entanglement detection in terms of inequality (2).

Example 1. Horodecki’s 3⊗ 3 state:

σα =
2

7
|ψ+〉〈ψ+|+ α

7
σ+ +

5− α

7
σ−,

where σ+ = 1
3
(|01〉〈01|+ |12〉〈12|+ |20〉〈20|), σ− = 1

3
(|10〉〈10|+ |21〉〈21|+ |02〉〈02|), |ψ+〉 =

1√
3
(|00〉+ |11〉+ |22〉). σα is separable for 2 ≤ α ≤ 3, bound (PPT) entangled for 3 < α ≤ 4,
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and free entangled for 4 < α ≤ 5 [32]. Employing inequality (3) for 3⊗ 3 systems,

4〈2I3 ⊗ I3 − I3 ⊗ λB1 + 2I3 ⊗ λB2 − λ1 ⊗ I3 − 4λ1 ⊗ λB1

−λA1 ⊗ λB2 + 2λA2 ⊗ In − λA2 ⊗ λB1 + 2λA2 ⊗ λB2 〉2ρ

≥ 36〈I3 ⊗ λB1 − λA1 ⊗ I3 − λA1 ⊗ λB2 + λA2 ⊗ λB1 〉2ρ

+81〈µA1 ⊗ µB1 + µA2 ⊗ µB2 〉2ρ,

(8)

we have that the left hand side of inequality (8) is 900
49

and the right hand side of inequality

(8) is 36(2α−5)2

49
+ 576

49
. Hence σα violates inequality (8) if and only if α > 4.

Example 2. Isotropic states are a class of U ⊗ U∗ invariant mixed states in Hn ⊗Hn [6]:

ρiso(f) =
1− f

n2 − 1
In +

n2f − 1

n2 − 1
|ψ+〉〈ψ+|,

with f = 〈ψ+|ρiso(f)|ψ+〉 satisfying 0 ≤ f ≤ 1, |ψ+〉 = 1√
n

∑n−1
i=0 |ii〉. These states are

shown to be separable if and only if they are PPT, i.e. f ≤ 1
n
. Now we utilize inequality

(3) with m = n. It can be verified that the left hand side of inequality (3) is ( 1−f
n2−1

)2 and

the right hand side of inequality (3) is ( n2f−1
n2(n2−1)

)2 for ρiso(f). If we choose U = V = In in

inequality (2), then the violation of this inequality for this isotropic state is −〈W (n,n)
In,In

〉ρiso(f) =
( n2f−1
n2(n2−1)

)2 − ( 1−f
n2−1

)2, which is positive if and only if f > 1
n
. Therefore, inequality (3) can

detect all the entanglement of isotropic states.

Example 3. Werner states are a class of U ⊗ U invariant mixed states in Hn ⊗Hn [33]:

ρwer(f) =
n− f

n3 − n
In +

nf − 1

n3 − n
Ṽ ,

where Ṽ =
∑n−1

i,j=0 |ij〉〈ji| and f = 〈ψ+|ρwer(f)|ψ+〉, −1 ≤ f ≤ 1. These states are separable

if and only if they are PPT, i.e. f ≥ 0. According to inequality (2), we choose U = |0〉〈1|+
|0〉〈1| +

∑n−1
i=2 |i〉〈i| and V = In, then the violation of this inequality is −〈W (n,n)

U,V 〉ρwer(f) =

(nf−1
n3−n)

2 − ( f+1
n(n+1)

)2, which is positive if and only if f < 2−n
2n−1

(See FIG. 1). Obviously, when

n = 3, Werner state violates this inequality if f < −0.2.

In the following, we study the relations between inequality (2) and entanglement distill-

ability.

Theorem 3 A state ρ ∈ Hm ⊗ Hn is distillable if and only if there exist two projectors A

and B mapping high dimensional spaces to two dimensional ones such that the restriction

of the state of N copies of ρ to such 2⊗ 2 subspace violates inequality (2).
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FIG. 1: The violation value of Werner state with respect to inequality (2) under U = |0〉〈1| +

|0〉〈1| +∑n−1
i=2 |i〉〈i| and V = In.

Proof. Any state ρ is distillable if and only if there exist two projectors A and B mapping

high dimensional spaces to two dimensional ones such that A⊗Bρ⊗NA⊗B is entangled [30].

However, A⊗Bρ⊗NA⊗B is two-qubit entangled if and only if there exist mN ×mN unitary

matrix U0, n
N × nN unitary matrix V0, and nonzero real numbers a and b, a2 + b2 = 1, such

that U0⊗V0(a|01〉+b|10〉) is the eigenvector of A⊗B(ρ⊗N )T1A⊗B with respect to a negative

eigenvalue. Taking into account that inequality (2) is the necessary and sufficient condition

for two-qubit entanglement [28], we have that ρ is distillable if and only if one finds two

projectors A and B mapping high dimensional spaces to two dimensional ones such that the

restriction of the state of N copies of ρ to such 2⊗ 2 subspace violates inequality (2).

Some necessary conditions for distillability have been proposed in Refs. [6, 18, 34]. The

distillability condition we obtained here is both necessary and sufficient and could be verified

experimentally in principle.

Example 4. For non-PPT (NPT) entangled state

̺1 =
p

6
(|00〉〈00|+ |01〉〈01|+ |02〉〈02|+ |10〉〈10|+ |11〉〈11|+ |12〉〈12|)− p

6
(|00〉〈12|

+|01〉〈12|+ |12〉〈00|+ |12〉〈01|+ |10〉〈11|+ |11〉〈10|) + 1− p

2
(|22〉〈22|+ |33〉〈33|),

Ref. [35] has proved that the distillability of this state can not be detected by reduction

criterion [6] and the criterion in Ref. [34]. The distillability of this state can not be recognized

either by the result in Ref. [18]. However, setting A = |0〉〈0|+|1〉〈1| and B = (|0〉+|1〉)(〈0|+
〈1|) + |2〉〈2|, one can verify that A ⊗ B̺1A ⊗ B violates inequality (2) with m = 2, n = 3

and U = I2, V = |1〉〈2|+ 1√
2
|0〉(〈0|+ 〈1|) + 1√

2
|2〉(〈0| − 〈1|). Therefore our inequality gives

a better recognition of distillability for this case.
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III. COMMENTS AND CONCLUSIONS

We have provided an inequality in terms of the expectation values of local observables,

each with two possible measurement outcomes, for detecting entanglement and distillability

for arbitrary dimensional bipartite systems. Any violation of this inequality implies that the

state being measured is entangled. Moreover, all pure entangled states violate the inequality,

namely the inequality is both necessary and sufficient in detecting entanglement for bipartite

pure states. As examples we have analyzed the entanglement detection of the Horodecki’s

state, isotropic state and Werner state. It has been shown that the inequality can detect

considerable mixed entangled states. Above all, the inequality is a necessary and sufficient

condition of distillability. The results may be used in experimental entanglement detection

and distillability verification.

In addition, since the dimensions of the two subsystems in inequality (2) are arbitrary,

this inequality could be also used to detect entanglement in multipartite systems: if a

multipartite state is bipartite separable under some partition, then it fulfills inequality (2)

under the corresponding bipartite partition. A multipartite pure state is bipartite separable

if and only if it fulfills inequality (2) for all unitary operators U and V under this bipartite

partition, for which the two subsystems may have different dimensions.
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