Skip to main content
Log in

Vortex and entanglement occurring in propagating states through coupled lossy waveguides

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A separable input state consisting of an \(n\)-photon Fock state and a coherent state propagating through coupled waveguides is investigated in detail. We obtained the analytical solutions for the state vector evolution, the wavefunction or probability distribution in the quadrature space and the \(P\)-function in the phase space. It is proved that the propagating states may evolve into quantum vortex states even for coupled lossy waveguides by appropriately selecting the propagation time. Based on the analytical \(P\)-function in phase space and the relative linear entropy for the propagating state, it is found that the propagating state may be entangled and non-classical. Specially, in absence of loss, the degree of entanglement only depends on the photon number \(n\) of the input Fock state but is independent of the displacement parameter \(\alpha \) associated with the input coherent state. Moreover, for coupled lossy waveguides the entanglement evolution can exhibit new features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Braunstein, S.L., Pati, A.K.: Quantum Information with Continuous Variables. Kluwer Academic, Dordrecht (2003)

    Book  MATH  Google Scholar 

  2. Braunstein, S.L., von Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MATH  Google Scholar 

  3. Agarwal, G.S., Puri, R.R., Singh, R.P.: Vortex states for the quantized radiation field. Phys. Rev. A 56, 4207–4215 (1997)

    Article  ADS  Google Scholar 

  4. Agarwal, G.S., Banerji, J.: Entanglement by linear SU(2) transformations: generation and evolution of quantum vortex states. J. Phys. A 39, 11503–11519 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Agarwal, G.S.: Engineering non-Gaussian entangled states with vortices by photon subtraction. New J. Phys. 13, 073008 (2011)

    Article  ADS  Google Scholar 

  6. Bandyopadhyay, A., Singh, R.P.: Wigner distribution of elliptical quantum optical vortex. Opt. Commun. 284, 256–261 (2011)

    Article  ADS  Google Scholar 

  7. Bandyopadhyay, A., Prabhakar, S., Singh, R.P.: Entanglement of a quantum optical elliptic vortex. Phys. Lett. A 375, 1926–1929 (2011)

    Article  ADS  MATH  Google Scholar 

  8. Zhu, K.C., Li, S.X., Zheng, X.J., Tang, H.Q.: Non-Gaussian state with vortex structure of quantized radiation field. J. Opt. Soc. Am. B 29, 1179–1186 (2012)

    Article  ADS  Google Scholar 

  9. Zhu, K.C., Li, S.X., Zheng, X.J., Zhou, Y.P.: Two-mode superposition coherent states with spatial vortex structure for the quantized radiation field. J. Mod. Opt. 59, 873–877 (2012)

    Article  ADS  Google Scholar 

  10. Lai, W.K., Buzek, V., Knight, P.L.: Nonclassical fields in a linear directional coupler. Phys. Rev. A 43, 6323–6336 (1991)

    Article  ADS  Google Scholar 

  11. Rai, A., Agarwal, G.S., Perk, J.H.H.: Transport and quantum walk of nonclassical light in coupled waveguides. Phys. Rev. A 78, 042304 (2008)

    Article  ADS  Google Scholar 

  12. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  13. Politi, A., Matthews, J.C.F., O’Brien, J.L.: Shors quantum factoring algorithm on a photonic chip. Science 325, 1221–1221 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Longhi, S.: Optical analog of population trapping in the continuum: classical and quantum interference effects. Phys. Rev. A 79, 023811 (2009)

    Article  ADS  Google Scholar 

  15. Bromberg, Y., Lahini, Y., Morandotti, R., Silberberg, Y.: Quantum and classical correlations in waveguide lattices. Phys. Rev. Lett. 102, 253904 (2009)

    Article  ADS  Google Scholar 

  16. Rai, A., Das, S., Agarwal, G.S.: Non-Gaussian and Gaussian entanglement in coupled lossy waveguides. Opt. Express 18, 6241–6254 (2010)

    Article  ADS  Google Scholar 

  17. Schleich, W.P.: Quantum Optics in Phase Space. Wiley/VCH, New York (2001)

    Book  MATH  Google Scholar 

  18. Sanders, B.C., Bartlett, S.D., Rudolph, T., Knight, P.L.: Photon-number superposition and the entangled coherent-state representation. Phys. Rev. A 68, 042329 (2003)

    Article  ADS  Google Scholar 

  19. Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132–5135 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  20. van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  21. Jeong, H., Kim, M.S., Lee, J.: Quantum-information processing for a coherent superposition state via a mixed entangled coherent channel. Phys. Rev. A 64, 052308 (2001)

    Article  ADS  Google Scholar 

  22. Agarwal, G.S., Biswas, A.: Quantitative measures of entanglement in pair coherent states. J. Opt. B 7, 350–354 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  23. Marian, P., Marian, T.A., Scutaru, H.: Inseparability of mixed two-mode Gaussian states generated with a SU(1,1) interferometer. J. Phys. A 34, 6969–6980 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaicheng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, K., Li, S., Tang, H. et al. Vortex and entanglement occurring in propagating states through coupled lossy waveguides. Quantum Inf Process 12, 2901–2915 (2013). https://doi.org/10.1007/s11128-013-0572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0572-2

Keywords

Navigation