Skip to main content
Log in

Testing Hardy’s ladder proof of nonlocality by joint measurements of qubits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an experimentally feasible scheme to test Hardy’s ladder proof of nonlocality with two qubits (two-level atoms) dispersively coupled to a driven cavity. First, we find that the required nonmaximally entangled two-qubit pure state can be prepared by only one-step two-qubit operation from the ground state \(|00\rangle \), assisted by two single-qubit gates. Next, we perform two single-qubit operations to encode the local information into the prepared nonmaximally entangled state. Finally, the nonlocal correlations between the two qubits can be directly detected by the joint measurement of the two-qubit register in one of selected computational basis, implemented by probing the steady-state transmitted spectra of the driven cavity. Consequently, the Hardy’s ladder proof of nonlocality can be effectively tested. The feasibility of our proposal with the current experimental technology is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eistein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  Google Scholar 

  2. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  3. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Google Scholar 

  5. Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)

    Article  ADS  Google Scholar 

  6. Rowe, M.A., Kiepinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental violation of a Bell’s inequality with efficient detection. Nature (London) 409, 791–794 (2001)

    Article  ADS  Google Scholar 

  7. Moehring, D.L., Madsen, M.J., Blinov, B.B., Monroe, C.: Experimental Bell inequality violation with an atom and a photon. Phys. Rev. Lett. 93, 090410 (2004)

    Article  ADS  Google Scholar 

  8. Ansmann, M., et al.: Violation of Bell’s inequality in Josephson phase qubits. Nature (London) 461, 504–506 (2009)

    Article  ADS  Google Scholar 

  9. Wei, L.F., Liu, Yx, Storcz, M.J., Nori, F.: Macroscopic Einstein-Podolsky-Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052307 (2006)

    Article  ADS  Google Scholar 

  10. Hasegawa, Y., Loidl, R., Badurek, G., Baron, M., Rauch, H.: Violation of a Bell-like inequality in single-neutron interferometry. Nature (London) 425, 45–48 (2003)

    Article  ADS  Google Scholar 

  11. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838–1840 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Svetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066–3069 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  13. Wu, C., Yeo, Y., Kwek, L.C., Oh, C.H.: Quantum nonlocality of four-qubit entangled states. Phys. Rev. A 75, 032332 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. Scarani, V., Acin, A., Schenck, E., Aspelmeyer, M.: Nonlocality of cluster states of qubits. Phys. Rev. A 71, 042325 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Chen, J.L., Wu, C., Kwek, L.C., Oh, C.H.: Bell inequalities for three particles. Phys. Rev. A 78, 032107 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  16. Laskowski, W., Paterek, T., Zukowski, M., Brukner, C.: Tight multipartite Bell’s inequalities involving many measurement settings. Phys. Rev. Lett. 93, 200401 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  17. Seevinck, M., Svetlichny, G.: Bell-type inequalities for partial separability in \(N\)-particle systems and quantum mechanical violations. Phys. Rev. Lett. 89, 060401 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  18. Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true \(n\)-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    Article  ADS  Google Scholar 

  19. Cabello, A.: Bell’s inequality for \(n\) spin-\(s\) particles. Phys. Rev. A 65, 062105 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Greenberger, D.M., Horne, M.A.: Going beyond Bell’s theorem. In: Kafatos, M. (ed.) Bell’s Theorem, Quantum Theory and Conception of the Universive. Kluwer, Dordrecht (1989)

  21. Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Cabello, A.: Bell’s theorem without inequalities and without probabilities for two observers. Phys. Rev. Lett. 86, 1911–1914 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  23. Cabello, A.: Bell’s theorem without inequalities and without alignments. Phys. Rev. Lett. 91, 230403 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  24. Cabello, A.: Bell’s theorem with and without inequalities for the three-qubit Greenberger-Horne-Zeilinger and W states. Phys. Rev. A 65, 032108 (2002)

    Article  ADS  Google Scholar 

  25. Goldstein, S.: Nonlocality without inequalities for almost all entangled states for two particles. Phys. Rev. Lett. 72, 1951 (1994)

    Article  ADS  Google Scholar 

  26. Kar, G.: Testing Hardy’s nonlocality with \(n\) spin-\(1/2\) particles. Phys. Rev. A 56, 1023–1024 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  27. Zheng, S.B.: Quantum nonlocality for a three-particle nonmaximally entangled state without inequalities. Phys. Rev. A 66, 014103 (2002)

    Article  ADS  Google Scholar 

  28. Ghirardi, G., Marinatto, L.: Hardy’s criterion of nonlocality for mixed states. Phys. Rev. A 73, 032102 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. Ghirardi, G., Marinatto, L.: Greenberger-Horne-Zeilinger argument of nonlocality without inequalities for mixed states. Phys. Rev. A 74, 022101 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  30. Kunkri, S., Choudhary, S.K.: Nonlocality without inequality for spin-\(s\) systems. Phys. Rev. A 72, 022348 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  31. Boschi, D., Branca, S., Martini, F.D., Hardy, L.: Ladder proof of nonlocality without inequalities: theoretical and experimental results. Phys. Rev. Lett. 79, 2755–2758 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Giuseppe, G.D., Martini, F.D., Boschi, D.: Experimental test of the violation of local realism in quantum mechanics without Bell inequalities. Phys. Rev. A 56, 176–181 (1997)

    Article  ADS  Google Scholar 

  33. White, A.G., James, D.F., Eberhard, P.H., Kwiat, P.G.: Nonmaximally entangled states: production, characterization, and utilization. Phys. Rev. Lett. 83, 3103–3107 (1999)

    Article  ADS  Google Scholar 

  34. Irvine, W.T.M., Hodelin, J.F., Simon, C., Bouwmeester, D.: Realization of Hardy’s thought experiment with photons. Phys. Rev. Lett. 95, 030401 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  35. Lunden, J.S., Steinberg, A.M.: Experimental joint weak measurement on a photon pair as a probe of Hardy’s paradox. Phys. Rev. Lett. 102, 020404 (2009)

    Article  ADS  Google Scholar 

  36. Yokota, K., Yamamoto, T., Koashi, M., Imoto, N.: Direct observation of Hardy’s paradox by joint weak measurement with an entangled photon pair. New J. Phys. 11, 033011 (2009)

    Article  ADS  Google Scholar 

  37. Vallone, G., Gianani, I., Inostroza, E.B., Saavedra, C., Lima, G., Cabello, A., Mataloni, P.: Testing Hardy’s nonlocality proof with genuine energy-time entanglement. Phys. Rev. A 83, 042105 (2011)

    Article  ADS  Google Scholar 

  38. Tavis, M., Cummings, F.W.: Exact solution for an \(N\)-molecule-radiation-field Hamiltonian. Phys. Rev. 170, 379–384 (1968)

    Article  ADS  Google Scholar 

  39. Blais, A., Gambetta, J., Wallraff, A., Schuster, D.I., Girvin, S.M., Devoret, M.H., Schoelkopf, R.J.: Quantum-information processing with circuit quantum electrodynamics. Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  40. Neilsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  41. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  42. Chow, J.M., et al.: Detecting highly entangled states with a joint qubit readout. Phys. Rev. A 81, 062325 (2010)

    Article  ADS  Google Scholar 

  43. Wallraff, A., et al.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  44. Blais, A., et al.: Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  45. Filipp, S., et al.: Two-qubit state tomography using a joint dispersive readout. Phys. Rev. Lett. 102, 200402 (2009)

    Article  ADS  Google Scholar 

  46. Wallraff, A., et al.: Approaching unit visibility for control of a superconducting qubit with dispersive readout. Phys. Rev. Lett. 95, 060501 (2005)

    Article  ADS  Google Scholar 

  47. McKeever, J., Boca, A., Booze, A.D., Buck, J.R., Kimble, H.J.: Experimental realization of a one-atom laser in the regime of strong coupling. Nature (London) 425, 268–271 (2003)

    Article  ADS  Google Scholar 

  48. Birnbaum, K.M., Boca, A., Miller, R., Boozer, A.D., Northup, T.E., Kimble, H.J.: Photon blockade in an optical cavity with one trapped atom. Nature (London) 436, 87–90 (2005)

    Article  ADS  Google Scholar 

  49. Majer, J., et al.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443–447 (2007)

    Article  ADS  Google Scholar 

  50. DiCarlo, L., et al.: Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature (London) 467, 574–578 (2010)

    Article  ADS  Google Scholar 

  51. Poletto, S., et al.: Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation. Phys. Rev. Lett. 109, 240505 (2012)

    Article  ADS  Google Scholar 

  52. Steffen, L., et al.: Realization of deterministic quantum teleportation with solid state qubits. arXiv: 1302.5621 (2013)

Download references

Acknowledgments

We sincerely thank the referee for his/her useful comments. This work is supported by the Natural Science Foundation of China under Grant Nos. 90921010, and 11174373, the Fundamental Research Program of China under Grant No. 2010CB923104, and the Fundamental Research Funds for the Central Universities under Grant Nos. SWJTU09CX078 and 2010XS47.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, H., Wei, LF. Testing Hardy’s ladder proof of nonlocality by joint measurements of qubits. Quantum Inf Process 12, 3341–3352 (2013). https://doi.org/10.1007/s11128-013-0602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0602-0

Keywords

Navigation