Skip to main content
Log in

Random quantum evolution

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The quantum no-cloning theorem and no-deleting theorem may be the most important quantum features for quantum communications or quantum computations. In this paper, we concentrate typical properties of random quantum evolution. We obtain that universal random evolutions change the generic unknown pure states into their orthogonal states approximately. Moreover, typical random evolutions distort the von Neumann entropy with constants. These results are extended to mixed states with a stronger orthogonal preparation ability. These typical characters are very important for quantum information retrieving or various quantum tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  2. Peres, A.: Quantum Theory: Concepts and Methods. Kluwer, Dordrecht (1995)

    MATH  Google Scholar 

  3. Herbert, N.: FLASH-a superluminal communicator based upon a new kind of quantum measurement. Found. Phys. 12, 1171 (1982)

    Article  ADS  Google Scholar 

  4. Peres, A.: How the no-cloning theorem got its name? eprint quant-ph/0205076 (2002)

  5. Bussey, P.J.: Communication and non-communication in Einstein-Rosen experiments. Phys. Lett. A 123, 1 (1987)

    Article  ADS  Google Scholar 

  6. Yuen, H.P.: Amplification of quantum states and noiseless photon amplifiers. Phys. Lett. A 113, 405 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  7. Barnum, H., Caves, C., Fuchs, C., Jozsa, R., Schumacher, B.: Noncommuting mixed states cannot be broadcast. Phys. Rev. Lett. 76, 2818 (1996)

    Article  ADS  Google Scholar 

  8. Buzek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  9. Brub, D., DiVincenzo, D.P., Ekert, A., Fuchs, C.A., Macchiavello, C., Smolin, J.A.: Optimal universal and state-dependent quantum cloning. Phys. Rev. A 57, 2368 (1998)

    Article  ADS  Google Scholar 

  10. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1997)

    Article  ADS  Google Scholar 

  11. Keyl, M., Werner, R.F.: Optimal cloning of pure states, testing single clones. J. Math. Phys. 40, 3283 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Braunstein, S.L., Buzek, V., Hillery, M.: Quantum-information distributors: quantum network for symmetric and asymmetric cloning in arbitrary dimension and continuous limit. Phys. Rev. A 63, 052313 (2001)

    Article  ADS  Google Scholar 

  13. Cerf, N.J.: Asymmetric quantum cloning in any dimension. J. Mod. Opt. 47, 187 (2000)

    MathSciNet  ADS  Google Scholar 

  14. Fiurasek, J., Cerf, N.J.: Quantum cloning a pair of orthogonally polarized photons with linear optics. Phys. Rev. A 77, 052308 (2008)

    Article  ADS  Google Scholar 

  15. Iblisdir, S., Acin, A., Gisin, N.: Generalised asymmetric quantum cloning. eprint quantph/0505152 (2005)

  16. Duan, L.-M., Guo, G.-C.: Probabilistic cloning and identification of linearly independent quantum states. Phys. Rev. Lett. 80, 4999 (1998)

    Article  ADS  Google Scholar 

  17. Pati, A.K.: Quantum superposition of multiple clones and the novel cloning machine. Phys. Rev. Lett. 83, 2849 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Chefles, A., Barnett, S.M.: Strategies and networks for state-dependent quantum cloning. Phys. Rev. A 60, 136 (1999)

    Article  ADS  Google Scholar 

  19. Luo, M.-X., Deng, Y., Chen, X.-B., Yang, Y.-X., Li, H.-H.: Faithful quantum broadcast beyond the no-go theorem. Quant. Inf. Process. 12(5), 1969–1979 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Scarani, V., Iblisdir, S., Gisin, N., Acin, A.: Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Wang, Y.N., Shi, H.D., Xiong, Z.X., Li, J., Ren, X.J., Mu, L.Z., Fan, H.: Unified universal quantum cloning machine and fidelities. Phys. Rev. A 84, 034302 (2011)

    Article  ADS  Google Scholar 

  22. Lamas-Linares, A., Simon, C., Howell, J.C., Bouwmeester, D.: Experimental quantum cloning of single photons. Science 296(5568), 712–714 (2002)

    Article  ADS  Google Scholar 

  23. Du, J.F., Durt, T., Zou, P., Li, H., Kwek, L.C., Lai, C.H., Oh, C.H., Ekert, A.: Experimental quantum cloning with prior partial information. Phys. Rev. Lett. 94, 040505 (2005)

    Article  ADS  Google Scholar 

  24. Nagali, E., Sansoni, L., Sciarrino, F., Martini, F.D., Marrucci, L., Piccirillo, B., Karimi, E., Santamato, E.: Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence. Nature Photonics 3, 720–723 (2009)

    Article  ADS  Google Scholar 

  25. Nha, H., Milburn, G.J., Carmichael, H.J.: Linear amplification and quantum cloning for non-Gaussian continuous variables. New J. Phys. 12, 103010 (2010)

    Article  ADS  Google Scholar 

  26. Chen, H.W., Lu, D.W., Chong, B., Qin, G., Zhou, X.Y., Peng, X.H., Du, J.F.: Experimental demonstration of probabilistic quantum cloning. Phys. Rev. Lett. 106, 180404 (2011)

    Article  ADS  Google Scholar 

  27. Nagali, E., Giovannini, D., Marrucci, L., Slussarenko, S., Santamato, E., Sciarrino, F.: Experimental optimal cloning of four-dimensional quantum states of photons. Phys. Rev. Lett. 105, 073602 (2010)

    Article  ADS  Google Scholar 

  28. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271 (1982)

    Article  ADS  Google Scholar 

  29. Chakrabarty, I., Ganguly, N., Choudhury, B.S.: Deletion, Bell’s inequality, teleportation. Quant. Inf. Process. 10, 27–32 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Arthur, L.B.: Einstein Manifolds, vol. 10. Springer, Berlin (1987)

    Google Scholar 

  31. Milman, V.D., Schechtman, G.: Asymptotic Theory of Finite Dimensional Normed Spaces, Volume 1200 of Lecture Notes in Mathematics. Springer, Berlin (1986)

    Google Scholar 

  32. Petz, D., Reffy, J.: On asymptotics of large Haar distributed unitary matrices. arXiv:math/0310338 (2003)

  33. Harrow, A.W., Winter, A.: How many copies are needed for state discrimination? IEEE Trans. Inf. Theory 58(1), 1–2 (2012)

    Article  MathSciNet  Google Scholar 

  34. Gross, D., Flammia, S.T., Eisert, J.: Most quantum states are too entangled to be useful as computational resources. Phys. Rev. Lett. 102, 190501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  35. Luo, M.X., Deng, Y.: Distort one qubit from copying and deleting. Quant. Inf. Process. 12, 1701 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Wishart, J., Biometrika, A., Anderson, T.W.: Introduction to Multivariate Statistical Analysis. Wiley, New York (1958)

    Google Scholar 

  37. Hayden, P., Leung, D.W., Winter, A.: Aspects of generic entanglement. Commun. Math. Phys. 265, 95–117 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Harrow, A., Hayden, P., Leung, D.: Superdense coding of quantum states. Phys. Rev. Lett. 92, 187901 (2004)

    Article  ADS  Google Scholar 

  39. Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Measuring quantum entanglement without prior state reconstruction. Phys. Rev. A 58, 833 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  40. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Opt. 41, 2315 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Benenti, G., Strini, G.: Optimal purification of a generic \(n\)-qudit state. Phys. Rev. A. 79, 052301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  42. Aubrun, G., Szarek, S.J., Ye, D.Y.: Entanglement thresholds for random induced states. arXiv:1106.2264v2 (2012)

  43. Uhlmann, A.: The ’transition probability’ in the state space of \(\alpha ^{*}\)-algebra. Rep. Math. Phys. 9, 273–279 (1976)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Benenti, G., Strini, G.: Optimal purification of a generic \(n\)-qudit state. Phys. Rev. A 79, 052301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  45. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Mirsky, L.: A trace inequality of John von Neuman. Monatsh. Math. 79(4), 303–306 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11226336, 61003287, 61170272, 61103198, 61272514, 61201253), the Fundamental Research Funds for the Central Universities (Nos. SWJTU11BR174, BUPT2012RC0221), the Fok Ying Tong Education Foundation No. 131067, the Specialized Research Fund for the Doctoral Program of Higher Education (20100005120002), the Natural Science Foundation of Henan Provincial Education Department (12A120003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, MX., Deng, Y., Ma, SY. et al. Random quantum evolution. Quantum Inf Process 12, 3353–3367 (2013). https://doi.org/10.1007/s11128-013-0603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0603-z

Keywords

Navigation