Skip to main content
Log in

Efficient nonlocal entangled state distribution over the collective-noise channel

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient nonlocal entanglement distribution protocol (EDP) to purify the two-photon polarization-entangled state, resorting to the projection measurement on the additional photons. With the help of the cross-Kerr nonlinearity, two remote parties can share two-photon maximally entangled polarization state from the arbitrary two-photon states with a certain success probability by iterating the entanglement purification process 6 times. Compared with conventional EDPs, the present one can obtain maximally entangled polarization state over an collective-noise channel with deterministic success probability. That is, the EDP is an optimal one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)

    Article  ADS  MATH  Google Scholar 

  2. Bell, J.S.: On the einstein podolsky rosen paradox. Physics (Long Island City, NY) 1, 195–200 (1965)

    Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  5. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Deng, F.G., Long, G.L.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(1–6), 042317 (2003)

    Article  ADS  Google Scholar 

  8. Kim, H., Cheong, Y.M., Lee, H.W.: Generalized measurement and conclusive teleportation with nonmaximal entanglement. Phys. Rev. A 70(1–7), 012309 (2004)

    Article  ADS  Google Scholar 

  9. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995)

    Article  ADS  Google Scholar 

  10. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Laflamme, R., Miquel, C., Paz, J.P., Zurek, W.H.: Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996)

    Article  ADS  Google Scholar 

  12. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91(1–4), 087901 (2003)

    Article  ADS  Google Scholar 

  13. Yamamoto, T., Shimamura, J., Özdemir, S.K., Koashi, M., Imoto, N.: Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95(1–4), 040503 (2005)

    Article  ADS  Google Scholar 

  14. Kalamidas, D.: Single-photon quantum error rejection and correction with linear optics. Phys. Lett. A 343, 331 (2005)

    Article  ADS  MATH  Google Scholar 

  15. Li, X.H., Deng, F.G., Zhou, H.Y.: Faithful qubit transmission against collective noise without ancillary qubits. Appl. Phys. Lett. 91(1–3), 144101 (2007)

    Article  ADS  Google Scholar 

  16. Sheng, Y.B., Deng, F.G.: Efficient quantum entanglement distribution over an arbitrary collective-noise channel. Phys. Rev. A 81(1–5), 042332 (2010)

    Article  ADS  Google Scholar 

  17. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417–2421 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Duan, L.M., Guo, G.C.: Preserving coherence in quantum computation by pairing quantum bits. Phys. Rev. Lett. 79, 1953–1956 (1997)

    Article  ADS  Google Scholar 

  19. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  20. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)

    Article  ADS  Google Scholar 

  21. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62(1–3), 054301 (2000)

    Article  ADS  Google Scholar 

  22. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64(1–8), 012304 (2001)

    Article  ADS  Google Scholar 

  23. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64(1–3), 014301 (2001)

    Article  ADS  Google Scholar 

  24. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77(1–7), 062325 (2008)

    Article  ADS  Google Scholar 

  25. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inform. Comput. 10, 272 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85(1–7), 012307 (2012)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85(1–9), 042302 (2012)

    Article  ADS  Google Scholar 

  28. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85(1–5), 022311 (2012)

    Article  ADS  Google Scholar 

  29. Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90(1–4), 207901 (2003)

    Article  ADS  Google Scholar 

  30. Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature (London) 421, 343 (2003)

    Article  ADS  Google Scholar 

  31. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  32. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  33. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067 (2001)

    Article  ADS  Google Scholar 

  34. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89(1–4), 257901 (2002)

    Article  ADS  Google Scholar 

  35. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77(1–8), 042308 (2008)

    Article  ADS  Google Scholar 

  36. Li, X.H.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(1–4), 044304 (2010)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81(1–7), 032307 (2010)

    Article  ADS  Google Scholar 

  38. Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82(1–4), 044305 (2010)

    Article  ADS  Google Scholar 

  39. Deng, F.G.: One-step error correction for multipartite polarization entanglement. Phys. Rev. A 83(1–8), 062316 (2011)

    Article  ADS  Google Scholar 

  40. Wang, C., Zhang, Y., Jin, G.S.: Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities. Phys. Rev. A 84(1–8), 032307 (2011)

    Article  ADS  Google Scholar 

  41. Wang, C., Zhang, Y., Jin, G.S.: Polarization-entanglement purification and concentration using cross-Kerr nonlinearity. Quantum Inform. Comput. 11, 988 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Deng, F.G.: Efficient multipartite entanglement purification with the entanglement link from a subspace. Phys. Rev. A 84(1–17), 052312 (2011)

    Article  ADS  Google Scholar 

  43. Nemoto, N., Munro, W.J.: A near deterministic linear optical CNOT gate. Phys. Rev. Lett. 93(1–4), 250502 (2004)

    Article  ADS  Google Scholar 

  44. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities. Phys. Rev. A 71(1–4), 060302(R) (2005)

    Article  ADS  Google Scholar 

  45. Kok, P., Munro, W.J., Nemoto, K., Ralph, T.C., Dowing, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007)

    Article  ADS  Google Scholar 

  46. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83(1–8), 053826 (2011)

    Article  ADS  Google Scholar 

  47. Shapiro, J.H.: Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73(1–11), 062305 (2006)

    Article  ADS  Google Scholar 

  48. Shapiro, J.H., Razavi, M.: Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9(1–17), 16 (2007)

    Article  ADS  Google Scholar 

  49. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81(1–8), 043823 (2010)

    Article  ADS  Google Scholar 

  50. Pryde, G.J., O’Brien, J.L., White, A.G., Bartlett, S.D., Ralph, T.C.: Measuring a photonic qubit without destroying it. Phys. Rev. Lett. 92(1–4), 190402 (2004)

    Article  ADS  Google Scholar 

  51. Ralph, T.C., Bartlett, S.D., O’Brien, J.L., Pryde, G.J., Wiseman, H.M.: Quantum nondemolition measurements for quantum information. Phys. Rev. A 73(1–11), 012113 (2006)

    Article  ADS  Google Scholar 

  52. Pryde, G.J., O’Brien, J.L., White, A.G., Ralph, T.C., Wiseman, H.M.: Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94(1–4), 220405 (2005)

    Article  ADS  Google Scholar 

  53. Jin, J.S., Yu, C.H., Song, H.S.: Nondestructive identification of the Bell diagonal state. Phys. Rev. A 83(1–6), 032109 (2011)

    Article  ADS  Google Scholar 

  54. Kok, P., Lee, H., Dowling, J.P.: Single-photon quantum-nondemolition detectors constructed with linear optics and projective measurements. Phys. Rev. A 66(1–9), 063814 (2002)

    Article  ADS  Google Scholar 

  55. Hofmann, H.F., Kojima, K., Takeuchi, S., Sasaki, K.: Optimized phase switching using a single-atom nonlinearity. J. Opt. B: Quantum Semiclass. Opt. 5, 218 (2003)

    Google Scholar 

  56. Wittmann, C., Andersen, U.L., Takeoka, M., Sych, D., Leuchs, G.: Discrimination of binary coherent states using a homodyne detector and a photon number resolving detector. Phys. Rev. A 81(1–11), 062338 (2010)

    Article  ADS  Google Scholar 

  57. Kok, P.: Effects of self-phase modulation on weak nonlinear optical quantum gates. Phys. Rev. A 77(1–7), 013808 (2008)

    Article  ADS  Google Scholar 

  58. Lin, Q., He, B.: Single-photon logic gates using minimal resources. Phys. Rev. A 80(1–5), 042310 (2009)

    Article  ADS  Google Scholar 

  59. Lin, Q., He, B., Bergou, J.A., Ren, Y.H.: Processing multi-photon state through operation on single photon: methods and applications. Phys. Rev. A 80, 042311 (2009)

    Article  ADS  Google Scholar 

  60. Schmidt, H., Imamoglu, A.: Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996)

    Article  ADS  Google Scholar 

  61. Chen, Y.F., Wang, C.Y., Wang, S.H., Yu, I.A.: Low-light-level cross-phase-modulation based on stored light pulses. Phys. Rev. Lett. 96(1–4), 043603 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Fuzhou University of China under Grant No. XRC-0976 and No. 2010-XQ-28, the funds from Education Department of Fujian Province of China under Grant No. JA11005, No. JA10009 and No. JA10039, the National Natural Science Foundation of Fujian Province of China under Grant No. 2010J01006 and No. 2012J01269, the National Natural Science Foundation of China under Grant No. 11047122 and No. 11105030, the Foundation of Ministry of Education of China under Grant No. 212085, and China Postdoctoral Science Foundation under Grant No. 20100471450.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Xia or Li-Qin Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Y., Fan, LL., Hao, SY. et al. Efficient nonlocal entangled state distribution over the collective-noise channel. Quantum Inf Process 12, 3553–3568 (2013). https://doi.org/10.1007/s11128-013-0610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0610-0

Keywords

Navigation