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Abstract 
 This paper proposes a multiparty quantum remote control (MQRC) protocol, 
which allows several controllers to perform remote operations independently on a 
target state based on a shared entanglement of Greenberger-Home-Zeilinger (GHZ) 
state.  
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1. Introduction 

 
 The property of quantum entanglement has become a crucial ingredient in 

quantum information. Many correlated researches have been proposed successively. 

In particular, quantum teleportation, first introduced by Bennett et al. [1], allowing 

Alice to send an arbitrary single photon |𝜓⟩ = (𝛼|0⟩ + 𝛽|1⟩) to a distant Bob via a 

classical channel, gains much more attention. In addition to teleportation, quantum 

entanglement also allows one to teleport an arbitrary unitary operation from Alice to 

Bob to operate on a quantum state. This manner is called “quantum remote control”.  

  

 The first quantum remote control (QRC), proposed by Huelga et al. in 2001 [2], 

explores the implementation of an arbitrary unitary operation upon a distant 

quantum system. That is, Alice can apply an arbitrary unitary operation 𝑈 on the 

quantum state |𝜓⟩  held by Bob located in a distant place. This task can be 

completed by bidirectional quantum state teleportation (BQST). Afterwards, many 

related QRC protocols [3-5] have been proposed. 

 

 So far, these remote control protocols investigate only the case of a single 



controller. That is, only one user can perform a remote operation on the target 

quantum state. Consider the following scenario where there is a safe deposit box 

whose switch is controlled by the angle of the quantum state |𝜓⟩. Controllers, 

located in distant locations, can perform rotation operations on the switch of this box 

by means of remote controls. Only when controllers perform operations with a 

correct sum of angles, can the box be opened successfully. The multiparty quantum 

remote control (MQRC) could be very useful in this environment. Furthermore, in 

many applications in quantum cryptography, such as in quantum secret sharing (QSS) 

[6-8] or in controlled quantum secure direct communication (CQSDC) [9, 10] and etc., 

it also requires that several users perform operations independently on the target 

quantum state. Hence, this paper intends to explore quantum remote control over 

multi-controllers that could be useful in the above mentioned scenarios. Though 

Chen et al. in [11] also mentioned remote control over multi-controllers (called 

observers there), the operations performed by the controllers have to be negotiated 

among these controllers beforehand. On the contrary, the newly proposed scheme 

allows users to independently perform operations in the set 𝑈 =  {𝑈0(𝜃), 𝑈1(𝜃)} 

[3],  

   𝑈0(𝜃) = �𝑒
𝑖𝑖 0
0 𝑒−𝑖𝑖

�, 𝑈1(𝜃) = � 0 𝑒𝑖𝑖
−𝑒−𝑖𝑖 0

�,               (1) 

where 𝜃 is an arbitrary real parameter. 

 

 The rest of this paper is organized as follows. The protocol with two controllers 

is first discussed in Section 2. Then, Section 3 extends it to an N-controller scenario. 

Finally, Section 4 concludes our discussion. 

 

2. Proposed QRC Protocol with Two Controllers 
 



 Suppose there are three participants, Alice, Charlie, the controllers, and Bob, 
the target quantum holder, in the system sharing a Greenberger-Home-Zeilinger 
(GHZ) state,  

|𝜙⟩𝑞𝑎𝑞𝑏𝑞𝑐 = 1
√2

(|000⟩ + |111⟩)𝑞𝑎𝑞𝑏𝑞𝑐,                    (2) 

where the 1st particle ‘𝑞𝑎’ is possessed by Alice, ‘𝑞𝑏’ by Bob, and ’𝑞𝑐’ by Charlie. 
Bob has an arbitrary quantum state, also called the target state: 

|𝜓⟩𝐵 = (𝛼|0⟩ + 𝛽|1⟩)𝐵,                         (3) 
where 𝛼2 + 𝛽2 = 1. The proposed protocol, enabling Alice and Charlie to execute 
𝑈0(𝜃) or 𝑈1(𝜃) on |𝜓⟩𝐵, is described step by step as follows: 
 

Step1 Bob first performs a controlled-NOT (CNOT) operation on his qubit pair 

 (𝑞𝑏 ,𝐵)  with 𝑞𝑏  as a control qubit and 𝐵  as a target qubit. Then, Bob 

 measures the qubit 𝐵 in Z basis {|0⟩, |1⟩} and the composite quantum state 

 becomes 

 CNOT𝑞𝑏𝐵�|𝜙⟩𝑞𝑎𝑞𝑏𝑞𝑐⨂|𝜓⟩𝐵� 

   = CNOT𝑞𝑏𝐵 �
1
√2

(𝛼|0000⟩ + 𝛼|1110⟩ + 𝛽|0001⟩ + 𝛽|1111⟩)𝑞𝑎𝑞𝑏𝑞𝑐𝐵�   

     = 1
√2
�(𝛼|000⟩ + 𝛽|111⟩)𝑞𝑎𝑞𝑏𝑞𝑐|0⟩𝐵 + (𝛼|111⟩ + 𝛽|000⟩)𝑞𝑎𝑞𝑏𝑞𝑐|1⟩𝐵�. (4) 

 Bob broadcasts the result of the measurement, 𝑀𝑀𝐵, via a classical channel. 

Step2 Alice performs a unitary operation 𝑈𝐴(𝜃𝑎) on her qubit 𝑞𝑎 as follows. If 

𝑀𝑀𝐵  is |0⟩, then Alice performs 𝑈𝐴(𝜃𝑎) on 𝑞𝑎 . Otherwise, she performs 

𝑈𝐴(−𝜃𝑎) on 𝑞𝑎 . Then, Alice measures 𝑞𝑎  in X basis {|+⟩ = 1
√2

(|0⟩ + |1⟩), 

|−⟩ = 1
√2

(|0⟩ − |1⟩)�  and sends her measurement result, 𝑀𝑀𝐴 , to Bob. 

Moreover, Alice has to inform Charlie which operation in 𝑈𝐴 she has done. 

That is, if 𝑈𝐴 = 𝑈0 (𝑈𝐴 = 𝑈1), then 𝐶𝑎 = 0 (𝐶𝑎 = 1). The message 𝐶𝑎 is sent 

to Charlie via a classical channel. 

Step3 Before Charlie performs the unitary operation 𝑈𝐶(𝜃𝑐) on his qubit 𝑞𝑐, 

 he would flip 𝑞𝑐 according to 𝐶𝑎. If it is 0, he does nothing, otherwise he 



 applies 𝜎𝑥 = |0⟩⟨1| + |1⟩⟨0| on 𝑞𝑐. Then, Charlie performs unitary operation 

 𝑈𝐶(𝜃𝑐) on 𝑞𝑐 and measures it just like Alice did. After that, Charlie also sends 

 his measurement result, 𝑀𝑀𝐶, to Bob via a classical channel. 

Step4 Finally, Bob can correct the state of the 𝑞𝑏 by performing a corresponding 

 unitary operation 𝑈𝑏 ∈ �𝐼, 𝜎𝑧 , 𝜎𝑥, 𝑖𝜎𝑦� on 𝑞𝑏 (shown in Table 1), 

𝐼 = |0⟩⟨0| + |1⟩⟨1|,   

𝜎𝑧 = |0⟩⟨0| − |1⟩⟨1|,   

𝜎𝑥 = |0⟩⟨1| + |1⟩⟨0|,   

         𝑖𝜎𝑦 = |0⟩⟨1| − |1⟩⟨0|,                        (5) 

 which is the result state after Alice and Charlie have performed their unitary 

 operations.  

 

Table 1: Measurement results and the corresponding operations 

𝑈𝐴(𝜃𝑎) 𝑈𝐶(𝜃𝑐) 𝑀𝑀𝐴 𝑀𝑀𝐶  𝑈𝑏 

𝑈0(𝜃𝑎) 𝑈0(𝜃𝑐) 

|+⟩ |+⟩ 𝐼 

|+⟩ |−⟩ 𝜎𝑧 

|−⟩ |+⟩ 𝜎𝑧 

|−⟩ |−⟩ 𝐼 

𝑈0(𝜃𝑎) 𝑈1(𝜃𝑐) 

|+⟩ |+⟩ 𝜎𝑥 

|+⟩ |−⟩ 𝑖𝜎𝑦 

|−⟩ |+⟩ 𝑖𝜎𝑦 

|−⟩ |−⟩ 𝜎𝑥 

𝑈1(𝜃𝑎) 𝑈0(𝜃𝑐) 

|+⟩ |+⟩ 𝜎𝑥 

|+⟩ |−⟩ 𝑖𝜎𝑦 

|−⟩ |+⟩ 𝑖𝜎𝑦 



|−⟩ |−⟩ 𝜎𝑥 

𝑈1(𝜃𝑎) 𝑈1(𝜃𝑐) 

|+⟩ |+⟩ 𝐼 

|+⟩ |−⟩ 𝜎𝑧 

|−⟩ |+⟩ 𝜎𝑧 

|−⟩ |−⟩ 𝐼 

 

 It should be noted that when one performs 𝑈1(𝜃) on the target state, the 

quantum state will be changed from |0⟩ to |1⟩ (or from |1⟩ to |0⟩). Because Alice 

and Charlie perform their unitary operations on distinct qubits which are entangled, 

Alice needs to send the classical message 𝐶𝑎 to Charlie in Step 2 to indicate which 

operation she has performed and to let Charlie adjust his state to the same one. 

 

 For example, suppose Alice wants to perform 𝑈1(𝜃𝑎) and Charlie wants to 

perform 𝑈0(𝜃𝑐) on the particle 𝐵, held by Bob. The final state of |𝜓⟩𝐵 should 

become 

 𝑈0(𝜃𝑐)𝑈1(𝜃𝑎)|𝜓⟩𝐵 = �−𝛼𝑒−𝑖(𝑖𝑎+𝑖𝑐)|0⟩ + 𝛽𝑒𝑖(𝑖𝑎+𝑖𝑐)|1⟩�
𝐵

.        (6) 

Let 𝑀𝑀𝐵 be |0⟩ in Step 2. Alice performs 𝑈1(𝜃𝑎) on 𝑞𝑎 and measures it in X 

basis. The state of the composite quantum system transforms to 

𝑈1(𝜃𝑎)(𝛼|000⟩ + 𝛽|111⟩)𝑞𝑎𝑞𝑏𝑞𝑐 = −𝛼𝑒−𝑖𝑖𝑎|1⟩𝑞𝑎|00⟩𝑞𝑏𝑞𝑐 + 𝛽𝑒𝑖𝑖𝑎|0⟩𝑞𝑎|11⟩𝑞𝑏𝑞𝑐  

           = 1
√2
�|+⟩𝑞𝑎�−𝛼𝑒

−𝑖𝑖𝑎|00⟩ + 𝛽𝑒𝑖𝑖𝑎|11⟩�
𝑞𝑏𝑞𝑐

 

          +|−⟩𝑞𝑎�𝛼𝑒
−𝑖𝑖𝑎|00⟩ + 𝛽𝑒𝑖𝑖𝑎|11⟩�

𝑞𝑏𝑞𝑐
�.  (7) 

Suppose 𝑀𝑀𝐴 is |+⟩, and because 𝐶𝑎 = 1, Charlie has to apply 𝜎𝑥 on 𝑞𝑐  first 

and then performs 𝑈0(𝜃𝑐) on it in Step 3. The result state is given by 

 𝑈0(𝜃𝑐)𝜎𝑥�−𝛼𝑒−𝑖𝑖𝑎|00⟩ + 𝛽𝑒𝑖𝑖𝑎|11⟩�
𝑞𝑏𝑞𝑐

 



    = 𝑈0(𝜃𝑐)�−𝛼𝑒−𝑖𝑖𝑎|01⟩ + 𝛽𝑒𝑖𝑖𝑎|10⟩�
𝑞𝑏𝑞𝑐

 

    = −𝛼𝑒−𝑖(𝑖𝑎+𝑖𝑐)|0⟩𝑞𝑏|1⟩𝑞𝑐 + 𝛽𝑒𝑖(𝑖𝑎+𝑖𝑐)|1⟩𝑞𝑏|0⟩𝑞𝑐  

    = 1
√2
��−𝛼𝑒−𝑖(𝑖𝑎+𝑖𝑐)|0⟩ + 𝛽𝑒𝑖(𝑖𝑎+𝑖𝑐)|1⟩�

𝑞𝑏
|+⟩𝑞𝑐 

   +�𝛼𝑒−𝑖(𝑖𝑎+𝑖𝑐)|0⟩ + 𝛽𝑒𝑖(𝑖𝑎+𝑖𝑐)|1⟩�
𝑞𝑏

|−⟩𝑞𝑐�.                (8) 

If Charlie measures 𝑞𝑐 in X basis and gets the 𝑀𝑀𝐶  is |+⟩, Bob can perform a 

correct operation 𝜎𝑥 to obtain the result state in Eq.(6). 

 

 In the above-mentioned scenario, Alice and Charlie perform only one unitary 

operation on the target state respectively. In fact, this protocol also allows controllers 

to perform multiple remote operations on the target quantum state independently. 

Alice may perform multiple unitary operations 𝑈𝐴1�𝜃𝑎1�, 𝑈𝐴2�𝜃𝑎2�, … ,𝑈𝐴𝑛�𝜃𝑎𝑛� on 

𝑞𝑎 and measures it in X basis to get 𝑀𝑀𝐴 in Step2, where 𝑈𝐴𝑖�𝜃𝑎𝑖� ∈ 𝑈, 𝑖 = 1 to 𝑛. 

We let 𝐶𝑎𝑖 = 0 �𝐶𝑎𝑖 = 1�  if 𝑈𝐴𝑖 = 𝑈0  �𝑈𝐴𝑖 = 𝑈1�. Alice has to calculate 𝐶𝐴 =

𝐶𝑎1 ⊕ 𝐶𝑎2 ⊕⋯⊕ 𝐶𝑎𝑛 , where ⊕ is a bitwise exclusive-OR operation, and then 

send it to Charlie via a classical channel. According to 𝐶𝐴, Charlie can decide whether 

he applies 𝜎𝑥  on 𝑞𝑐  in Step3 or not. After Charlie performs multiple unitary 

operations 𝑈𝐶1�𝜃𝑐1�, 𝑈𝐶2�𝜃𝑐2�, … ,𝑈𝐶𝑚�𝜃𝑐𝑚� on 𝑞𝑐, where 𝑈𝐶
𝑗 �𝜃𝑐𝑗� ∈ 𝑈, 𝑗 = 1 to 𝑚, 

and measures it in X basis to get 𝑀𝑀𝐶, he also calculates 𝐶𝑐 = 𝐶𝑐1 ⊕ 𝐶𝑐2 ⊕⋯⊕

𝐶𝑐𝑚 , 𝐶𝐴𝐶 = 𝐶𝐴 ⊕ 𝐶𝑐 and sends it together with 𝑀𝑀𝐶  to Bob in Step 3. Based on 

these Bob can determine the correct operation 𝑈𝑏 (shown in Table 2). 

 

Table 2: Calculation results and the corresponding operations 

𝐶𝐴𝐶  𝑀𝑀𝐴 ⊕𝑀𝑀𝐶  𝑈𝑏 

0 0 𝐼 



0 1 𝜎𝑧 

1 0 𝜎𝑥 

1 1 𝑖𝜎𝑦 

 

3. Proposed Multiparty QRC Protocol 
 
 This section extends the proposed protocol to a multi-controller scenario with N 

controllers Alice1, Alice2, …, AliceN and Bob with a target quantum state |𝜓⟩𝐵 . 

Suppose they share an (N+1)-particle GHZ state in the system,  

|𝜓⟩ = 1
√2
�|0〉𝑞𝑎1 |0〉𝑞𝑎2 … |0〉𝑞𝑎𝑁|0〉𝑞𝑏 + |1〉𝑞𝑎1 |1〉𝑞𝑎2 … |1〉𝑞𝑎𝑁|1〉𝑞𝑏�,    (9) 

where the particles 𝑞𝑎1 , 𝑞𝑎2 , … , 𝑞𝑎𝑁  and 𝑞𝑏  are possessed by Alice1, Alice2, …, 

AliceN and Bob respectively. 

 

Step1 Bob first performs a controlled-NOT operation on his qubit pair (𝑞𝑏 ,𝐵) 

with 𝑞𝑏 as a control qubit and 𝐵 as a target qubit. Then, Bob measures the 

qubit 𝐵 in Z basis {|0⟩, |1⟩} and broadcasts the result of the measurement, 

𝑀𝑀𝐵, via a classical channel. 

Step2 Alice1 performs a unitary operation 𝑈𝐴1�𝜃𝐴1� on her qubit 𝑞𝑎1  as follows. 

If 𝑀𝑀𝐵  is |0⟩, Alice1 performs 𝑈𝐴1�𝜃𝐴1� on 𝑞𝑎1 . Otherwise, she performs 

𝑈𝐴1�−𝜃𝐴1�  on 𝑞𝑎1 . Then, Alice1 measures 𝑞𝑎1  in X basis {|+⟩, |−⟩}  and 

sends the result of measurement, 𝑀𝑀𝐴1, to Bob. Like the above protocol, Alice1 

has to send 𝐶𝐴1  to Alice2 via a classical channel. 

Step3 Alice2, Alice3, …, AliceN perform their unitary operations on their 

 possessed particles one by one like Alice1 did. 

Step4 According to 𝐶𝐴1 ,𝐶𝐴2 , … ,𝐶𝐴𝑁  and 𝑀𝑀𝐴1 ,𝑀𝑀𝐴2 , … ,𝑀𝑀𝐴𝑁 , Bob has to 

 perform a corresponding unitary operation 𝑈𝑏 on 𝑞𝑏. Table 2 can be extended 



 in a straightforward way for this purpose. 

 

 Similarly, Alice1, Alice2, …, AliceN can also perform multiple remote operations 

subsequently and independently on the target state. With the classical information, 

𝐶𝐴1 ,𝐶𝐴2 , … ,𝐶𝐴𝑁  and 𝑀𝑀𝐴1 ,𝑀𝑀𝐴2 , … ,𝑀𝑀𝐴𝑁 , Bob can recover the final state 

successfully. 

 

4. Conclusions 
 
 This paper proposes a multiparty QRC protocol using the GHZ state. Based on 

the property of entanglement, each controller can perform unitary operations from 

the set 𝑈 independently on a target quantum state. Because the angles 𝜃′s in the 

unitary operations are determined by controllers, Bob has no knowledge about this 

information. However, by means of classical communications, Bob still can obtain the 

result quantum state. 
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