Skip to main content
Log in

Two-step entanglement concentration for arbitrary electronic cluster state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present an efficient protocol for concentrating an arbitrary four-electron less-entangled cluster state into a maximally entangled cluster state. As a two-step entanglement concentration protocol (ECP), it only needs one pair of less-entangled cluster state, which makes this ECP more economical. With the help of electronic polarization beam splitter (PBS) and the charge detection, the whole concentration process is essentially the quantum nondemolition (QND) measurement. Therefore, the concentrated maximally entangled state can be remained for further application. Moreover, the discarded terms in some traditional ECPs can be reused to obtain a high success probability. It is feasible and useful in current one-way quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Knill, E., Laflamme, R., Miburn, G.J.: A scheme for efficient quantum computation with linear optics. Nature 409, 46 (2001)

    Article  ADS  Google Scholar 

  2. Raussendorf, R., Briegel, H.J.: A One-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  3. Raussendorf, R., Browne, D.E., Briegel, H.J.: Measurement-based quantum computation on cluster states. Phys. Rev. A 68, 022312 (2008)

    Article  ADS  Google Scholar 

  4. Ziberberg, O., Braunecker, B., Loss, B.: Controlled-NOT gate for multiparticle qubits and topological quantum computation based on parity measurements. Phys. Rev. A 77, 012327 (2008)

    Article  ADS  Google Scholar 

  5. Beenakker, C.W.J., DiVincenzo, D.P., Tmary, C., Kindermann, M.: Charge detection enables freeelectron quantum computation. Phys. Rev. Lett. 93, 020501 (2004)

    Article  ADS  Google Scholar 

  6. Ioniciciu, R.: Entangling spins by measuring charge: a parity-gate toolbox. Phys. Rev. A 75, 032339 (2007)

    Article  ADS  Google Scholar 

  7. Feng, X.L., Kwek, L.C., Oh, C.H.: Electronic entanglement purification scheme enhanced by charge detections. Phys. Rev. A 71, 064301 (2005)

    Article  ADS  Google Scholar 

  8. Sheng, Y.B., Deng, F.G., Long, G.L.: Multipartite electronic entanglement purification with charge detection. Phys. Lett. A 375, 396 (2010)

    Article  ADS  Google Scholar 

  9. Li, T., Ren, B.C., Wei, H.R., Hua, M., Deng, F.G.: High-efficiency multipartite entanglement purification of electron-spin states with charge detection. Quantum Inf. Precess. 12, 855 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Wang, C., Zhang, Y., Ma, H.Q.: Multipartite electronic entanglement purification using quantum-dot spin and microcavity system. Quantum Inf. Precess. 12, 525 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization entanglement concentration for electrons with charge detection. Phys. Lett. A 373, 1823 (2009)

    Article  MATH  ADS  Google Scholar 

  12. Ren, B.C., Hua, M., Li, T., Du, F.F., Deng, F.G.: Multipartite entanglement concentration of electronspin states with CNOT gates. Chin. Phys. B 21, 090303 (2012)

    Article  ADS  Google Scholar 

  13. Zhou, L.: Efficient entanglement concentration for electron-spin W state with the charge detection. Quantum Inf. Process. 12, 2087 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Wang, C.: Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys. Rev. A 86, 012323 (2012)

    Article  ADS  Google Scholar 

  15. Zhang, X.L., Feng, M., Gao, K.L.: Cluster-state preparation and multipartite entanglement analyzer with fermions. Phys. Rev. A 73, 014301 (2006)

    Article  ADS  Google Scholar 

  16. Chiu, Y.J., Chen, X., Chuang, I.L.: Fermionic measurement-based quantum computation. Phys. Rev. A 87, 012305 (2013)

    Article  ADS  Google Scholar 

  17. Nielsen, M.A.: Optical quantum computation using cluster states. Phys. Rev. Lett. 93, 040503 (2004)

    Article  ADS  Google Scholar 

  18. Ralph, T.C.: Scaling of multiple postselected quantum gates in optics. Phys. Rev. A 70, 012312 (2005)

    Article  ADS  Google Scholar 

  19. Dawson, C.M., Haselgrove, H.L., Nielsen, M.A.: Noise thresholds for optical quantum computers. Phys. Rev. Lett. 96, 020501 (2006)

    Article  ADS  Google Scholar 

  20. Duan, L.M., Rausssendorf, R.: Efficient quantum computation with probabilistic quantum gates. Phys. Rev. Lett. 95, 080503 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  21. Varnava, M., Browne, D.E., Rudolph, T.R.: Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006)

    Article  ADS  Google Scholar 

  22. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  23. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A. 60, 194 (1999)

    Article  ADS  Google Scholar 

  24. Shi, B.S., Jiang, Y.K., Guo, G.C.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  25. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  26. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartile systems with nonlinear optics. Phys. Rev. A. 77, 062325 (2008)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  29. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 044305 (2012)

    Google Scholar 

  30. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on project measurement. Phys. Rev. A. 85, 022311 (2012)

    Article  ADS  Google Scholar 

  31. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. Sheng, Y.B., Zhou, L., Wang, L., Zhao, S.M.: Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf. Process. 12, 1885 (2013)

    Article  MATH  ADS  Google Scholar 

  33. Gu, B.: Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. J. Opt. Soc. Am. B 7, 1685 (2012)

    Article  ADS  Google Scholar 

  34. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  35. Sheng, Y.B., Zhou, L.: Quantum entanglement concentration based on nonlinear optics for quantum communications. Entropy 15, 1776 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. Choudhury, B.S., Dhara, A.: An entanglement concentration protocol for cluster states. Quantum Inf. Process. 12, 2577 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Si, B., Su, S.L., Sun, L.L., Cheng, L.Y., Wang, H.F., Zhang, S.: Efficient three-step entanglement concentration for an arbitrary four-photon cluster state. Chin. Phys. B. 22, 030305 (2013)

    Article  ADS  Google Scholar 

  38. Xu, T.T., Xiong, W., Ye, L.: Concentrating arbitrary four-photon less-entangled cluster state by single photons. Mod. Phys. Lett. B 26, 1250214 (2012)

    Article  ADS  Google Scholar 

  39. Field, M., Smith, C.G., Pepper, M., Ritchie, D.A., Frost, J.E.F., Jones, G.A.C., Hasko, D.G.: Measurements of coulomb blockade with a noninvasive voltage probe. Phys. Rev. Lett. 70, 1311 (1993)

    Article  ADS  Google Scholar 

  40. Ionicioiu, R., D’Amico, I.: Mesoscopic Stern-Gerlach device to polarize spin currents. Phys. Rev. B 67, 041307 (2003)

    Article  ADS  Google Scholar 

  41. Popescu, A.E., Ionicioiu, R.: All-electrical quantum computation with mobile spin qubits. Phys. Rev. B 69, 245422 (2004)

    Article  ADS  Google Scholar 

  42. Elzerman, J.M., Hanson, R., Willems van Beveren, L.H., Vandersypen, L.M.K., Kouwenhoven, L.P.: Excited-state spectroscopy on a nearly closed quantum dot via charge detection. Appl. Phys. Lett. 84, 4617 (2004)

    Article  ADS  Google Scholar 

  43. Shaner, E.A., Lyon, S.A.: Picosecond time-resolved two-dimensional ballistic electron transport. Phys. Rev. Lett. 93, 037402 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 11104159, University Natural Science Research Project of Jiangsu Province under Grant No. 13KJB140010, Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, the Open Research Fund Program of National Laboratory of Solid State Microstructures under Grant No. M25022, the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology, Nanjing University of Posts and Telecommunications, Ministry of Education (No. NYKL201303), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Bo Sheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, SY., Liu, J., Zhou, L. et al. Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf Process 12, 3633–3647 (2013). https://doi.org/10.1007/s11128-013-0623-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0623-8

Keywords

Navigation