Skip to main content
Log in

Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme is presented to implement bidirectional controlled quantum teleportation (QT) by using a five-qubit entangled state as a quantum channel, where Alice may transmit an arbitrary single qubit state called qubit A to Bob and at the same time, Bob may also transmit an arbitrary single qubit state called qubit B to Alice via the control of the supervisor Charlie. Based on our channel, we explicitly show how the bidirectional controlled QT protocol works. By using this bidirectional controlled teleportation, espcially, a bidirectional controlled quantum secure direct communication (QSDC) protocol, i.e., the so-called controlled quantum dialogue, is further investigated. Under the situation of insuring the security of the quantum channel, Alice (Bob) encodes a secret message directly on a sequence of qubit states and transmits them to Bob (Alice) supervised by Charlie. Especially, the qubits carrying the secret message do not need to be transmitted in quantum channel. At last, we show this QSDC scheme may be determinate and secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Beige, A., Englert, B.G., Kurtsiefer, C., Weinfurter, H.: Secure communication with a publicly known key. Acta. Phys. Pol. A 101, 357 (2002)

    ADS  Google Scholar 

  2. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  3. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  4. Lee, H., Lim, J., Yang, H.J.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)

    Article  ADS  Google Scholar 

  5. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  6. Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A 75(2), 026301 (2007)

    Article  ADS  Google Scholar 

  7. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78(6), 064304 (2008)

    Article  ADS  Google Scholar 

  8. Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1), 67–70 (2006)

    Article  ADS  Google Scholar 

  9. Ren, B.C., Wei, H.R., Hua, M., Li, T., Deng, F.G.: Photonic spatial Bell-state analysis for robust quantum secure direct communication using quantum dot-cavity systems. Euro. Phys. J. D 67, 30–37 (2013)

    Article  ADS  Google Scholar 

  10. Zhang, Z.J.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342(1), 60–66 (2005)

    Article  MATH  ADS  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Muralidharan, S., Panigrahi, P.K.: Quantum information splitting using multipartite cluster states. Phys. Rev. A 78(6), 062333 (2008)

    Article  ADS  Google Scholar 

  13. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352(1), 55–58 (2006)

    Article  MATH  ADS  Google Scholar 

  15. Wang, S.F., Liu, Y.M., Chen, J.L., Liu, X.S., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum. Inf. Process. (2013). doi:10.1007/s11128-013-0537-5

  16. Liu, D.C., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Generalized three-party qubit operation sharing. Int. J. Quanum Inf. 11(1), 1350011 (2013)

    Article  MathSciNet  Google Scholar 

  17. Ji, Q.B., Liu, Y.M., Yin, X.F., Liu, X.S., Zhang, Z.J.: Quantum operation sharing with symmetric and asymmetric W states. Quantum. Inf. Process. (2013). doi:10.1007/s11128-013-0533-9

    MathSciNet  Google Scholar 

  18. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  20. Yan, F.L., Zhang, X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Euro. Phys. J. B 41(1), 75–78 (2004)

    Article  ADS  Google Scholar 

  21. Cao, H.J., Song, H.S.: Quantum secure direct communication scheme using a W state and teleportation. Phys. Scr. 74(5), 572 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893–897 (2005)

    Article  ADS  Google Scholar 

  23. Zhang, Q.N., Li, C.C., Li, Y.H., Nie, Y.Y.: Quantum secure direct communication based on four-qubit cluster states. Int. J. Theor. Phys. 52(1), 22–27 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Xiu, X.M., Dong, L., Gao, Y.J., Chi, F.: Quantum secure direct communication using six-particle maximally entangled states and teleportation. Commun. Theor. Phys. 51(3), 429–432 (2009)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. Huelga, S.F., Plenio, M.B., Vaccaro, J.A.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65(4), 042316 (2002)

    Article  ADS  Google Scholar 

  26. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52(6), 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  27. Li, Y.H., Nie, L.P.: Bidirectional controlled teleportation by using a five-qubit composite GHZ-Bell state. Int. J. Theor. Phys. 52(5), 1630–1634 (2013)

    Article  MathSciNet  Google Scholar 

  28. Srinatha, N., Omkar, S., Srikanth, R., Banerjee, S., Pathak, A.: The quantum cryptographic switch. Quant. Inf. Process. (2013). doi:10.1007/s11128-012-0487-3

  29. Brown, I.D.K., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38(5), 1119–1131 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation quantum-state sharing and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77(3), 032321 (2008)

    Article  ADS  Google Scholar 

  31. Hou, K., Li, Y.B., Shi, S.H.: Quantum state sharing with a genuinely entangled five-qubit state and Bell-state measurements. Opt. Commun. 283(9), 1961–1965 (2010)

    Article  ADS  Google Scholar 

  32. Jain, S., Muralidharan, S., Panigrahi, P.K.: Secure quantum conversation through non-destructive discrimination of highly entangled multipartite states. Europhys. Lett. 87(6), 60008 (2009)

    Article  ADS  Google Scholar 

  33. Panigrahi, P.K., Karumanchi, S., Muralidharan, S.: Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state. Pramana 73(3), 499–504 (2009)

    Article  ADS  Google Scholar 

  34. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing a single-qubit operation with a five-qubit genuine state. Chin. Phys. Lett. 30(2), 020301 (2013)

    Article  ADS  Google Scholar 

  35. Wang, X.W., Peng, Z.H., Jia, C.X., Wang, Y.H., Liu, X.J.: Scheme for implementing controlled teleportation and dense coding with genuine pentaqubit entangled state in cavity QED. Opt. Commun. 282(4), 670–673 (2009)

    Article  ADS  Google Scholar 

  36. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69(6), 064302 (2004)

    Article  ADS  Google Scholar 

  37. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  38. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  39. Cerè, A., Lucamarini, M., Giuseppe, G.D., Tombesi, P.: Experimental test of two-way quantum key distribution in the presence of controlled noise. Phys. Rev. Lett. 96(20), 200501 (2006)

    Article  ADS  Google Scholar 

  40. Watrous, J.: PSPACE has constant-round quantum interactive proof systems. Theor. Comput. Sci. 292(3), 575–588 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61265001), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB202005 and No. 2010GZW0026 and No. 20132BAB202008), the Research Foundation of state key laboratory of advanced optical communication systems and networks, Shanghai Jiao Tong University, China (2011GZKF031104), and the Research Foundation of the Education Department of Jiangxi Province (No. GJJ13236 and No. GJJ10404 and No. GJJ13235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-hua Li.

Appendix

Appendix

Alice’s possible measurement result, Bob’s possible measurement result, Charlie’s possible measurement result, final state with the corresponding transformation performed by Alice and Bob on qubits 4 and 3, respectively, where \(\sigma ^{i},i\in \left\{ {x,y,z} \right\} \) are Pauli matrices.

Alice’s result

Bob’s result

Charlie’s result

Final state with the receiver

Unitary transformation corresponding to the measurement outcomes (++, \(+-, -+, -\))

\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Phi ^{\pm }} \right\rangle _{B2}\)

\(\left| 0 \right\rangle _5 \)

\(\left( {b_0 \left| 1 \right\rangle \pm b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \)

\(\sigma _4^x \otimes I_3, \sigma _4^x \otimes \sigma _3^z, -i\sigma _4^y \otimes I_3, -i\sigma _4^y \otimes \sigma _3^z \)

\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Psi ^{\pm }} \right\rangle _{B2} \)

\(\left| 0 \right\rangle _5 \)

\(\left( {b_0 \left| 0 \right\rangle \pm b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \)

\(I_4 \otimes I_3, I_4 \otimes \sigma _3^z, \sigma _4^z \otimes I_3, \sigma _4^z \otimes \sigma _3^z \)

\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Phi ^{\pm }} \right\rangle _{B2} \)

\(\left| 0 \right\rangle _5 \)

\(\left( {b_0 \left| 1 \right\rangle \pm b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \)

\(\sigma _4^x \otimes \sigma _3^x, \sigma _4^x \otimes -i\sigma _3^y, -i\sigma _4^y \otimes \sigma _3^x, -i\sigma _4^y \otimes -i\sigma _3^y \)

\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Psi ^{\pm }} \right\rangle _{B2} \)

\(\left| 0 \right\rangle _5 \)

\(\left( {b_0 \left| 0 \right\rangle \pm b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \)

\(I_4 \otimes \sigma _3^x, I_4 \otimes -i\sigma _3^y, \sigma _4^z \otimes \sigma _3^x, \sigma _4^z \otimes -i\sigma _3^y \)

\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Phi ^{\pm }} \right\rangle _{B2} \)

\(\left| 1 \right\rangle _5 \)

\(\left( {b_0 \left| 0 \right\rangle \mp b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \)

\(\sigma _4^z \otimes \sigma _3^x, \sigma _4^z \otimes -i\sigma _3^y, I_4 \otimes \sigma _3^x, I_4 \otimes -i\sigma _3^y \)

\(\left| {\Phi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Psi ^{\pm }} \right\rangle _{B2} \)

\(\left| 1 \right\rangle _5 \)

\(-\left( {b_0 \left| 1 \right\rangle \mp b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 1 \right\rangle \pm a_1 \left| 0 \right\rangle } \right) _3 \)

\(\sigma _4^z \sigma _4^x \otimes \sigma _3^x, \sigma _4^z \sigma _4^x \otimes -i\sigma _3^y, -i\sigma _4^y \sigma _4^z \otimes \sigma _3^x, -i\sigma _4^y \sigma _4^z \otimes -i\sigma _3^y \)

\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Phi ^{\pm }} \right\rangle _{B2} \)

\(\left| 1 \right\rangle _5 \)

\(\left( {b_0 \left| 0 \right\rangle \mp b_1 \left| 1 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \)

\(\sigma _4^z \otimes I_3, \sigma _4^z \otimes \sigma _3^z, I_4 \otimes I_3, I_4 \otimes \sigma _3^z \)

\(\left| {\Psi ^{\pm }} \right\rangle _{A1} \)

\(\left| {\Psi ^{\pm }} \right\rangle _{B2} \)

\(\left| 1 \right\rangle _5 \)

\(-\left( {b_0 \left| 1 \right\rangle \mp b_1 \left| 0 \right\rangle } \right) _4 \otimes \left( {a_0 \left| 0 \right\rangle \pm a_1 \left| 1 \right\rangle } \right) _3 \)

\(\sigma _4^z \sigma _4^x \otimes I_3, \sigma _4^z \sigma _4^x \otimes \sigma _3^z, -i\sigma _4^y \sigma _4^z \otimes I_3, -i\sigma _4^y \sigma _4^z \otimes \sigma _3^z \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Yh., Li, Xl., Sang, Mh. et al. Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf Process 12, 3835–3844 (2013). https://doi.org/10.1007/s11128-013-0638-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0638-1

Keywords

Navigation