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We investigate some properties of the entanglement of hypergraph states in purely hypergraph 

theoretical terms. We first introduce an approach for computing local entropic measure on qubit t 

of a hypergraph state by using the Hamming weight of the so-called t-adjacent subhypergraph. 

Then we quantify and characterize the entanglement of hypergraph states in terms of local 

entropic measures obtained by using the above approach. Our results show that a class of n-qubit 

hypergraph states can not be converted into any graph state under local unitary transformations. 
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I. INTRODUCTION 

The understanding of the subtle properties of multipartite entangled states [1] is at the very 

heart of quantum information theory [2]. But the ultimate goal to cope with the properties of 

arbitrary multipartite states is far from being reached. Therefore, several special classes of 

entangled states have been introduced and identified to be useful for certain tasks. It is well known 

that graph states [3, 4] are an example of these classes. Any graph state can be constructed on the 

basis of a (simple and undirected) graph. Although graph states can describe a large family of 

entangled states including cluster states [5], GHZ states, stabilizer states [6], etc., it is clear that 

they cannot represent all entangled states. To go beyond graph states and still keep the appealing 

connection to graphs, Ref. [7] introduces an axiomatic framework for mapping graphs to quantum 

states of a suitable physical system, and extends this framework to directed graphs and weighted 

graphs. Several classes of multipartite entangled states, such as qudit graph states [8], Gaussian 

cluster states [9], projected entangled pair states [10], and quantum random networks [11], 

emerge from the axiomatic framework. In [12], we generalize the above axiomatic framework to 

encoding hypergraphs into so-called quantum hypergraph states. 

It has been known that hypergraph states include graph states [12]. One may ask whether 

hypergraph states are equivalent to graph states under local unitary transformations, that is, 

whether hypergraph states can describe more quantum states than graph states under local unitary 

transformations. Ref. [13] has shown that one class of three-qubit hypergraph states can not be 

converted into any graph state under local unitaries. The main aim of this work is to answer the 

above question for n qubits. For this, we will address the issue of using the entropic measure [14] 

to quantify and characterize the entanglement of hypergraph states in purely hypergraph 

theoretical terms. Several literatures have shown that there are several approaches for studying the 

properties of the entanglement of hypergraph states in the hypergraph theoretical terms. For graph 

states, Ref. [3] presents various upper and lower bounds to the Schmidt measure [15] in graph 

theoretical terms. For hypergraph states, similar work is done in [12]. Moreover, Ref. [12] 

qualitatively studies the entanglement structure of hypergraph states in purely hypergraph 

theoretical terms. In this paper, we will present an approach for computing local entropic measure 

on qubit t of a hypergraph state by using the Hamming weight of the so-called t-adjacent 



subhypergraph. Then we will investigate some properties of the entanglement by using local 

entropic measures. Furthermore, we will show a class of n-qubit hypergraph states is not 

equivalent to any graph state under local unitary transformations. 

This paper is organized as follows. In Sec. II, we recall notations of hypergraphs, hypergraph 

states, etc. In Sec. III, we define the Hamming weight of a hypergraph. Then we show how to 

calculate it by using the hypergraph theoretical terms. In Sec. IV, we present an approach for 

computing local entropic measures of a hypergraph state by means of the Hamming weights of 

some special subhypergraphs. Furthermore, we investigate some properties of the entanglement of 

hypergraph states by means of local entropic measures. We also indicate that a family of 

hypergraph states can not be converted into any graph state under local unitary transformations. 

Section V contains our conclusions. 

 

II. PRELIMINARIES 

Formally, a hypergraph is a pair ( ),V E , where V is the set of vertices, ( )E V⊆℘  is the set 

of hyperedges and ( )S℘  denotes the power set of the set S. The empty hypergraph is defined as 

( ),V ∅ . If a hypergraph only contains the empty hyperedge ∅  or one-vertex hyperedges (called 

loops), it is trivial. The rank of a hypergraph g, denoted by ( )ran g , is the maximum cardinality 

of a hyperedge in g. A hypergraph ( )', 'V E  is called a subhypergraph of ( ),V E if 'V V⊆  

and 'E E⊆ . For a vertex t V∈  we define the t-adjacent subhypergraph tg  of ( ),g V E=   

as ( ),t t tg V E=  where { }tV V t= −  and { }{ }|tE e t t e e E= − ∈ ∧ ∈ . Moreover, a 

hypergraph can be depicted by the visual form as shown in Fig. 1. Each vertex is represented as a 

dot while each hyperedge is represented as a closed curve which encloses the dots corresponding 

to vertices incident with the hyperedge. 

Let kZ  be the 2 2k k×  diagonal matrix which satisfies 
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− =
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                           (1) 

where k is a nonnegative integer. Suppose that [ ] { }1,2,...,V n n= ≡  and e V⊆ . Then the 

n-qubit hypergraph gate eZ  is defined as 
n e

e
Z I

⊗ −
⊗  which means that 

e
Z  acts on the 

qubits in e while the identity I acts on the rest. An n-qubit hypergraph state g  can be 

constructed by ( ),g V E=  as follows. Each vertex labels a qubit (associated with a Hilbert 



space 
2
� ) initialized in ( )

1
0 1

2
φ = + ≡ + . The state g  is obtained from the initial 

state 
n⊗

+  by applying the hyperedge operator eZ  for each hyperedge e E∈ , that is, 

n

e

e E

g Z
⊗

∈

= +∏ .                               (2) 

Thus hypergraph states of n qubits are corresponding to { }( )2 , , | 0kZ k n+ ≤ ≤�  by the 

axiomatic approach while graph states are related with ( )2

2, ,Z+�  [7, 12]. 

It is known that real equally weighted states [16] are equivalent to hypergraph states [12]. In 

fact, let [ ]V n=  and define a mapping c on ( )V℘  as 

( )
1

,
k

k e

e
e V c e x e

∈

= Φ
∀ ⊆ =  ≠ Φ


∏ .                       (3) 

Then we can construct a 1-1 mapping u  between hypergraphs and Boolean functions which 

satisfies ( ),g V E∀ = , 

( ) ( ) ( )1 2, ,..., n

e E

u g x x x c e
∈

= ⊕ .                       (4) 

where ⊕ denotes the addition operator over 2� . Thus we have 

( ) ( )
( )

2 1

0

1
1

2

n

e E
n c e

e u gn
xe E

g Z x ψ∈

−
⊗ ⊕

=∈

= + = − ≡∑∏             (5) 

where ( )u g
ψ  is just the real equally weighted state associate with the Boolean function ( )u g .  

Let g and g’ be two hypergraphs with n vertices. We say that they are LU equivalent if there 

exist local unitraries  { }
1,2,...,l l n

U
=

 such that 

1 2 ... nU U Uφ ϕ= ⊗ ⊗ ⊗ ,                   (6) 

i.e., g  and 'g  are equivalent under local unitary operations. 

 

III. HAMMING WEIGHT 

In this section we discuss how to obtain the Hamming weight of a Boolean function by means 

of hypergraph theory. It is known that the Hamming weight of a Boolean function f is defined as 

( )1 1f −
 where S  denotes the cardinality of the set S. By (4), we also can define the Hamming 

weight of a hypergraph g with n vertices as 

( ) ( )1 1hw g f −≡                               (7) 



where ( ) ( )( )1 2 1 2, ,..., , ,...,n nf x x x u g x x x= . We give the following proposition to calculate 

the Hamming weight of g. 

Propostion 1. Let [ ]( ),g n E=  be a hypergraph with n vertices. Then 

(i) If E = ∅ , then ( ) 0hw g = . 

(ii) If { }1 2, ,..., mE e e e= , then 

( ) ( ) 1 2
1 ...

1 1 1

2 2 2 4 2 ... 2 2i j i j ki m

m
mn e e n e e en e n e e e

i i j m i j k m

hw g
−− −− −

= ≤ < ≤ ≤ < < ≤

= − + + + −∑ ∑ ∑
∪ ∪ ∪ ∪ ∪ ∪

. (8) 

Proof. (i) Form (4), we can obtain that ( ) ( )1 2, ,..., 0nu g x x x = for any 1 2, ,..., nx x x . Thus 

( ) 0hw g = by (7). (ii) When 1m = , it is easily seen that (8) is true by (4) and (7). Assume that 

(8) is true when m t= . Now we will prove that (8) is also true when 1m t= + . Let 

{ }1 2 1, ,..., tE e e e += and [ ] { }( )1' , tg n E e += − . We denote ( ) ( )'hw g hw g−  by ∆ . It is 

clear that 

( )11 1 1 2 1...

1 1

2 2 2 4 2 ... 2 2i j tt i t t

t
tn e e en e n e e n e e e

i i j t

++ + +
−− − −

= ≤ < ≤

∆ = − + + + −∑ ∑
∪ ∪∪ ∪ ∪ ∪

.     (9) 

Since g’ has t hyperedges, we can obtain 

( ) ( ) 1 2
1 ...

1 1 1

' 2 2 2 4 2 ... 2 2i j i j ki t

t
tn e e n e e en e n e e e

i i j t i j k t

hw g
−− −− −

= ≤ < ≤ ≤ < < ≤

= − + + + −∑ ∑ ∑
∪ ∪ ∪ ∪ ∪ ∪

. (10) 

By (9) and (10), we can obtain the equation (8) for 1m t= + .                          ■ 

According to (8), it is easy to obtain the Hamming weight of a hypergraph. For instance, 

( )4hw g  of the hypergraph 4g in Fig. 1(d) is equal to 6 by (8). According to the above 

proposition, the Hamming weight of a hypergraph has some properties as follows. We will first 

discuss how to identify whether the Hamming weight of a hypergraph is odd or not. 

Corollary 2. Let [ ]( ),g n E=  be a hypergraph. ( )hw g  is odd if and only if [ ]n E∈ . 

Proof. (i) “if”. Suppose that { }1 2, ,..., mE e e e= . Without loss of generality, let us denote the 

hyperedge [ ]n  by me . If 1m = , then [ ]{ }E n= . Thus it clear that ( ) 1hw g = . If 2m ≥ , 

we denote the hypergraph [ ] [ ]{ }( ),n E n−  by g’. According to the above proposition, we can 

obtain that 

( )
1

1 1 1

' 2 2 2 i ji

m
n e en e

i i j m

hw g
−

−−

= ≤ < ≤ −

= −∑ ∑
∪
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mn e e e n e e e

i j k m

−
−− −

≤ < < ≤ −

+ + + −∑
∪ ∪ ∪ ∪ ∪
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Clearly, ( )hw g  is even. By (8), it is known that 

( ) ( )'hw g hw g= + ∆                           (12) 

where 

[ ] [ ] [ ] ( ) [ ]1 2 1
1 ...

1 1 1 1

2 2 2 4 2 ... 2 2i ji m
mn e e nn n n e n n e e e n

i m i j m

−
−−− − −

≤ ≤ − ≤ < ≤ −

∆ = − + + + −∑ ∑
∪ ∪∪ ∪ ∪ ∪ ∪

.  (13) 

By simple calculation, we can obtain 

( ) ( )
1 10 1 2 1

1 1 1 12 4 ... 2 1
m mm

m m m mC C C C
− −−

− − − −∆ = − + + + − = − .          (14) 

Thus ( )hw g  is odd since ( )'hw g  is even and ∆  is odd. (ii) “only if”. Assume that 

[ ]n E∉ . Clearly, we can obtain that ( )hw g  would be even by (8).                     ■ 
According to the proof of the above corollary, we can easily obtain the following corollary. 

Corollary 3. Let [ ]( ),g n E=  be a hypergraph. If [ ]n E∈ , then 

( ) ( ) ( )
1

' 1
m

hw g hw g
−

= + − .                    (15) 

where [ ] [ ]{ }( )' ,g n E n= −  and m E= . 

We say that a hypergraph is odd (even) if its Hamming weight is odd (even). By the corollary 2, 

it is known that the sufficiency and necessary condition of an n-vertex odd hypergraph g is 

( )ran g n= . In the following, we will investigate the properties of the hamming weight of the 

hypergraph g for ( )ran g n< . 

Proposition 4. Let g be a hypergraph with n vertices. Then 

(i) ( )ran 0g =  if and only if ( )hw g  equals to either 0 or 2n
. 

(ii) if ( )ran 1g = , then ( ) 12nhw g −= . 

Proof. It is clear that (i) is true. Now we prove (ii). Let [ ]( ),g n E=  and m E= . For 

( )ran 1g = , two cases should be considered as follows. (*) The empty hyperedge E∅ ∉ . It is 

clear that 1m ≥  and each hyperedge in g is a loop. According to the proposition 1, we can obtain 

 ( ) ( )
11 2 3

1 1 1

2 2 2 4 2 ... 2 2
m

mn n n n m

i i j m i j k m

hw g
−− − − −

= ≤ < ≤ ≤ < < ≤
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( )1 1 2 32 ... 1
mn m
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( )1 0 1 2 32 ... 1 1
mn m

m m m m mC C C C C−  = − − + − + + − −
 

               

( )1 12 1 1 1 2
mn n− − = − − − =

 
.                             (16) 

(**) The empty hyperedge E∅ ∈ . It is clear that 2m ≥  and all hyperedges except the empty 

hyperedge ∅  are loops. Thus it is clear that 

( ) ( )2 'nhw g hw g= −                            (17) 

where [ ] { }( )' ,g n E= − ∅ . According to (i), it is known that ( ) 1' 2nhw g −=  since ∅  is not 

included in g’. By (17), we can obtain ( ) 12nhw g −= .                                ■ 
Note that the converse proposition of (ii) in the above proposition is not true. In fact, it is clear 

that the Hamming weight of a 3-vertex complete graph { }( )1,2,3 ,g E=  with 

{ } { } { }{ }1,2 , 1,3 , 2,3E = is equal to 4 while its rank is 2. 

 

IV. LOCAL ENTROPIC MEASURES 

In this paper, the local entropic measure ( )2

tE φ  on qubit t of an n-qubit pure state φ  is 

given by the determinant of the reduced density matrix ( )all but tTrtρ φ φ≡ , that is, 

( ) ( )2 dett

tE φ ρ≡  [17]. It is known that the local entropic measures are an entanglement 

monotone for a single copy case and invariant under local unitary operations. Moreover, it is clear 

that ( )2

1
0

4

tE φ≤ ≤ . 

Let [ ]( ),g n E=  be a hypergraph. By (5), the reduced state on qubit t of the corresponding 

hypergraph state g  can be written into 

( )all but t

1

2
Tr

1

2

t

a

g g

a

ρ

 
 

= =  
 
  

                        (18) 

where ( ) ( )( ) ( )( )1 1 1 1 1 1

1 1 1

1
,..., ,0, ..., ,..., ,1, ...,

,..., , ..., 0

1
1

2

t t n t t n

t t n

u g x x x x u g x x x x

n
x x x x

a − + − +

− +

⊕

=

= −∑ . It is known that there 

are two (n-1)-valuable Boolean functions p and q such that 

( ) ( ) ( ) ( )1 2 1 1 1 1 1 1, ,..., ,..., , ,..., ,..., , ,...,n t t t n t t nu g x x x x p x x x x q x x x x− + − += ⊕ .      (19) 



Then we can obtain 

( ) ( )1 1 1

1 1 1

1
,..., , ...,

,..., , ..., 0

1
1

2

t t n

t t n

p x x x x

n
x x x x

a − +

− + =

= −∑ .            (20) 

By the definition of the t-adjacent subhypergraph and (19), it is clear that 

( ) ( )1 1 1,..., , ...,t t n tp x x x x u g− + = .                   (21) 

From (20) and (21), we can obtain 

( )11
2 2

2

n

tn
a hw g− = −  .                      (22) 

According to the definition of the local entropic measure, we can get 

( ) 2

2

1

4

tE g a= − .                          (23) 

Thus it is import for calculating ( )2

tE g  to obtain the Hamming weight of the t-adjacent 

subhypergraph tg  of g. As shown in Fig. 1, the hypergraph 4g in (d) is just the 4-adjacent 

subhypergaph of g in (a). Since it is shown that ( )4 6hw g =  in Sec. III, we can obtain that 

( )4

2

3

16
E g =  by (22) and (23). Next, we will discuss some properties of local entropic 

measures in the hypergraph theoretical terms. 

Propositon 5. Let [ ]( ),g n E=  be a hypergraph and [ ]t n∈ . Then 

(i) ( )ran 0tg =  if and only if ( )2 0tE g = . 

(ii) if ( )ran 1tg = , then ( )2

1

4

tE g = , that is, qubit t is maximally entangled with the other 

n-1 qubits. 

(iii) if ( )ran 1tg n= − , then ( )2

1
0

4

tE g< < . 

Proof. (i) (*)“if”. Since ( )2 0tE g = , the absolute of a in (23) has to be 
1

2
. Then, by (22), 

( )thw g is either 0 or 
12n−
. This implies that ( )ran 0tg =  according to the proposition 4. 

(**)“only if”. Since ( )ran 0tg = , we can obtain that ( )thw g  is either 0 or 
12n−
 according to 

the proposition 4. Then the reduced density operator tρ  can be written into one of 

1 1

2 2

1 1

2 2

 
 
 
 
  

 and 

1 1

2 2

1 1

2 2

 
− 

 
 −
  

.                       (24) 



Thus ( )2 0tE g =  by (23). (ii) Since ( )ran 1tg = , we can obtain that ( ) 22n

thw g −=  

according to the proposition 4. Then, by (22) the reduced density operator tρ  can be written into 

1
0

2

1
0

2

tρ

 
 

=  
 
  

.                                

Thus ( )2

1

4

tE g =  by (23). (iii) Since ( )ran 1tg n= − , we can obtain that ( )thw g  is odd by 

the corollary 2. Thus ( )2

1
0

4

tE g< < .                                           ■ 

Note that the converse proposition of (ii) in the above proposition is not true. For g’ shown in 

Fig. 1(b), it is clear that ( )4

2

1
'

4
E g =  while ( )4ran ' 2 1g = > . In fact, ( )4 ' 4hw g =  since 

4 'g  is a 3-vertex complete graph, which is shown in Sec. III. By (22) and (23) we can obtain 

( )4

2

1
'

4
E g = .  

We say that an n-qubit pure state φ  is locally maximally entangled [18] if all of its local 

entropic measures are the maximum, that is, for any [ ]t n∈  it holds that ( )2

1

4

tE φ = . In Fig. 

1(c), the state ''g  is just of graph state and it is locally maximally entangled by the above 

proposition. It is easily seen that all graph states are locally maximally entangled. One may ask 

whether every locally maximally entangled hypergraph belongs to graph states. Our answer is 

“no”. In fact, the hypergraph { }( )1,2,3, 4 ,E  with { }{ }, , |1 4E i j k i j k= ≤ < < ≤ is locally 

maximally entangled but not of graph states. Moreover, the following corollary can be easily 

obtained according to the above proposition. 

Corollary 6. Let g be a hypergraph with n vertices. Then 

(i) If ( ) { }ran 0,1g ∈ , then ( )2 0tE g =  for any vertex t. 

(ii) If ( )ran 2g = , then ( )2

1
0,

4

tE g
 

∈ 
 

 for any vertex t. 

(iii) If ( )ran g n= , then ( )2

1
0

4

tE g< <  for any vertex t. 

Proposition 7. Let [ ]( ),g n E=  and [ ]( )' , 'g n E=  be two hypergraphs with n vertices. If 

( )ran g n=  and ( )ran ' 1g n≤ − , then ( ) ( )2 2 't tE g E g≠  for any vertex t. 



Proof. Since ( )ran g n= and ( )ran ' 1g n≤ − , we can obtain that [ ]n E∈  and [ ] 'n E∉ . 

According to the corollary 2, it is known that ( )thw g and ( )'thw g are respectively odd and 

even for any vertex t. By (22) and (23), it is clear that ( ) ( )2 2 't tE g E g≠ .              ■ 

By the above proposition and the properties of local entropic measure, we can obtain main 

conclusion of this work as follows. 

Proposition 8. Let [ ]( ),g n E= . If [ ]n E∈ , the hypergraph g is not LU equivalent to any 

hypergraph which does not include the hyperedge [ ]n . 

Suppose that 3n ≥ . It is clear that no graph with n vertices includes the hyperedge[ ]n . Thus 

no graph state of n qubits is LU equivalent to any n-qubit hypergraph state whose corresponding 

hypergraph [ ]( ),g n E=  satisfies[ ]n E∈ . 

 

V. CONCLUSIONS 

This work uses the local entropic measures to quantify and characterize the entanglement of 

hypergraph states of n qubits. For this, we introduce an approach for computing the local entropic 

measures in purely hypergraph theoretical terms. At first, we define the Hamming weight of a 

hypergraph. Then we give a method to compute the Hamming weight of the hypergraph by using 

hypergraph theory. And we prove that one can use the Hamming weight of the t-adjacent 

subhypergraph to calculate the local entropic measure on qubit t of a hypergraph state. Our 

research shows that the n-vertex hypergraphs including the hyperedge [ ]n  are not LU equivalent 

to any other hypergraph. Since (simple and undirected) graphs with n ( )3n ≥  vertices do not 

include the hyperedge [ ]n , hypergraph states of n qubits are not equivalent to graph states under 

local unitaries. This implies that hypergraph states can represent more states than graph stares 

under local unitary transformations. 
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Figure 1. Examples of hypergraphs. The hypergraphs (a)-(c) have the same vertex set 

{ }1,2,3,4 . The hypergraph g  in (a) has 4 hyperedges: { }4 ,{ }1,2 ,{ }3,4  and{ }2,3, 4 . In (b), 

the hypergraph 'g  also has 3 hyperedges: { }1,2,4 , { }1,3, 4  and { }2,3, 4 . Three hyperedges, 

i.e., { }1,3 , { }2,3 and { }3,4 , constitute the hyperedge set of ''g  in (c). The 3-vertex 

hypergraph 4g  in (d) has 3 hyperedges: ∅ , { }3 and { }2,3 . The hypergraph 4g  is just the 

4-adjacent subhypergaph of g . 
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