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We propose “weak one-way deficit” by weak measurements as the generalization of one-way deficit
defined for standard projective measurements. The weak one-way deficit for Werner state is obtained
analytically. We find that weak one-way deficit is smaller than the standard one-way deficit, which
contrasts with a straightforward expectation based on the known fact that super-quantum discord
by weak measurement is always larger than the quantum discord defined by projective measurement.
On the other hand, by tuning the weak measurement continuously to the projective measurement,
both weak one-way deficit and super-quantum discord converge to the same value, which is either
the one-way deficit or the quantum discord both quantifying quantum correlation. In this sense,
weak measurement does not necessarily capture more quantumness of correlations. We also give
the geometry of super-quantum discord of the Bell-diagonal states with explicit geometrical figures.
As an application, the dynamic behavior of super-quantum correlation including super-quantum
discord and weak one-way deficit under decoherence is investigated. We find that the order relation
of the super-quantum correlation and the quantum correlation keep unchanged under the phase
flipping channel for the Bell-diagonal states and the Werner states.

I. INTRODUCTION

Weak measurement introduced by Aharonov, Albert, and Vaidman (AAV) [1] in 1988 is universal in

the sense that any generalized measurements can be realized as a sequence of weak measurements which

result in small changes to the quantum state for all outcomes [2]. Weak measurement is very useful, much

progress has been made in this interesting field, including the contribution of the probe dynamics to the

weak measurement [3], such as weak measurement with arbitrary probe [4], entangled probes [5], a qubit

probe [6], weak measurement with a spin observable [7, 8], and so on. In addition, weak measurement

realized by some experiments is also very useful for high-precision measurements. For example, Hosten

and Kwiat [9] use the weak measurement to observe the spin Hall effect in light; Dixon et al. [10] apply

the weak measurement to detect very small transverse beam deflections; Gillett et al. [11] study the weak

measurement to examine the feedback control of quantum systems in the presence of noise.

The quantum correlations of quantum states include entanglement and other kinds of nonclassical corre-

lations. It is well accepted that the quantum correlations are more general than entanglement [12–14]. A

canonical measure of quantum correlations is the quantum discord [15] which describes the quantumness

of correlations. It quantifies how much a system can be disrupted when we observe it to obtain the clas-

sical information. Remarkable developments have been achieved toward the importance and applications

of quantum discord. In particular, there are some precise expressions for quantum discord for two-qubit

states, such as for the X states [16–20]. The geometry of the quantum correlations about those states is

also investigated [17, 21]. Recently, researches on the dynamics of quantum discord in various noisy envi-

ronments have revealed many attractive features [22]. It is demonstrated that discord is more robust than

entanglement for both Markovian and non-Markovian dissipative processes.

Besides quantum discord, a lot of other measures of quantum correlations have been given, such as

the quantum deficit [23, 24], measurement-induced disturbance [25], symmetric discord [26, 27], relative

entropy of discord and dissonance [28], geometric discord [29, 30], and continuous-variable discord [31, 32].

A nice review paper about quantum correlations can be found in [33]. Among them, the work deficit [23]

is one operational approach to quantify quantum correlations. From the physical point of view, quantum

deficit originates in describing a process which tries to extract work by nonlocal operation from a correlated

system coupled to a heat bath in the case of pure states. It can be related to more general forms of quantum

correlations. Similarly, quantum discord can also be justified by a physical interpretation [34] by that the

erasure of quantum correlations must lead to entropy production in the system and the environment [35].
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Similar to quantum discord, Oppenheim et al. propose a definition of work deficit and verify that quantum

deficit is equal to the difference of the mutual information and classical deficit [36]. Some simple forms

of deficit are found in [37]. It is shown that the classical information deficit [38] is lower-bounded by the

(regularized) relative entropy of entanglement for Werner and isotropic states [39]. Recently, the definition

of the one-way deficit is given by the relative entropy over all local von Neumann measurements on one

subsystem which reveals the fundamental role of quantum correlations as a resource for the distribution

of entanglement [40, 41]. Other definitions of the one-way deficit by von Neumann measurements on one

subsystem are also proposed [42].

Quantum discord and the one-way deficit both are quantum correlations based on von Neumann mea-

surement. Since the fundamental role of weak measurements, it is interesting to know how those quantum

correlations will be for weak measurement? Recently, it is shown that weak measurement performed on

one of the subsystems can lead to “super-quantum discord” that is always larger than the normal quantum

discord captured by the strong (projective) measurements [43]. It is natural to ask whether weak measure-

ments can always capture more quantumness of correlations. In this article, we propose a definition of the

weak one-way deficit by weak measurement. Interestingly, by tuning continuously from strong measure-

ment to weak measurement, the discrepancy between the super-quantum discord and weak one-way deficit

becomes larger. In comparison with super-quantum discord which is larger than the standard discord, the

weak one-way deficit decreases for weak measurement, while they are completely the same for projective

measurement. In this sense, weak measurement does not always capture more quantumness of correlations.

It depends on the specified measure of quantum correlations. We calculate the weak one-way deficit for

Werner states and compare super-quantum correlation with quantum correlation in Sect. II. We give super-

quantum discord for Bell-diagonal states and depict the level surface of constant super-quantum discord

and quantun discord in Sect. III. In Sect. IV, the dynamic behavior of super-quantum discord and weak

one-way deficit under decoherence is investigated. A brief conclusion is given in Sect. V.

II. SUPER-QUANTUM CORRELATION OF WERNER STATE WITH WEAK

MEASUREMENTS

The quantum discord for bipartite quantum state ρAB with the strong measurement {ΠB
i } performed

on the subsystem B is the difference between the mutual information I(ρAB) [44] and classical correlation

JB(ρAB) [14]

D(ρAB) = min
{ΠB

i
}

∑

i

piS(ρA|i) + S(ρB)− S(ρAB) (1)

with the minimization going over all projection-valued measurements {ΠB
i }, where S(ρ) = −tr (ρ log ρ) is

the von Neumann entropy of a quantum state ρ, ρB is the reduced density matrices of ρAB and

pi = trAB[(IA ⊗ΠB
i )ρAB(IA ⊗ΠB

i )], ρA|i =
1

pi
trB [(IA ⊗ΠB

i )ρAB(IA ⊗ΠB
i )]. (2)

The weak measurement operators are given by [2]

P (x) =

√

(1− tanhx)

2
Π0 +

√

(1 + tanhx)

2
Π1,

P (−x) =

√

(1 + tanhx)

2
Π0 +

√

(1− tanhx)

2
Π1,

(3)

where x is the measurement strength parameter, Π0 and Π1 are two orthogonal projectors with Π0+Π1 = I.

The weak measurement operators satisfy: (i) P †(x)P (x) + P †(−x)P (−x) = I, (ii) limx→∞ P (x) = Π0 and

limx→∞ P (−x) = Π1.

Recently, Singh and Pati propose the super-quantum discord for bipartite quantum state ρAB with weak

measurement on the subsystem B [43], the super-quantum discord denoted by Dw(ρAB) is given by

Dw(ρAB) = min
{ΠB

i
}
Sw(A|{PB(x)}) + S(ρB)− S(ρAB) (4)
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with the minimization going over all projection-valued measurements {ΠB
i }, where S(ρ) = −tr (ρ log ρ) is

the von Neumann entropy of a quantum state ρ, ρB is the reduced density matrices of ρAB, and

Sw(A|{PB(x)}) = p(x)S(ρA|PB(x)) + p(−x)S(ρA|PB(−x)), (5)

p(±x) = trAB[(I ⊗ PB(±x))ρAB(I ⊗ PB(±x))], (6)

ρA|PB(±x) =
trB[(I ⊗ PB(±x))ρAB(I ⊗ PB(±x))]

trAB[(I ⊗ PB(±x))ρAB(I ⊗ PB(±x))]
, (7)

{PB(x)} is weak measurement operators performed on the subsystem B.

Streltsov et al. give the definition of the one-way deficit by von Neumann measurements on the subsystem

B [42]

∆→(ρAB) = min
{Πk}

S(
∑

i

ΠkρABΠk)− S(ρAB). (8)

Now, let us define what we call as the weak one-way deficit by weak measurement on the subsystem B,

∆→
w (ρAB) = min

{Πk}
S(

∑

P (±x)

(I ⊗ PB(±x))ρAB(I ⊗ PB(±x))) − S(ρAB). (9)

The Werner state is a special case of Bell-diagonal state and it can be a maximally entangled state in a

special case, namely

ρAB = z|Ψ−〉〈Ψ−|+ (1− z)

4
I, (10)

where |Ψ−〉 = (|01〉 − |10〉)/
√
2.

For the Bell-diagonal states, quantum discord equals to the one-way deficit [45], which is also true for the

Werner state. Quantum discord for Werner state is given by [25]

D(ρAB) =
1− z

4
log(1− z)− 1 + z

2
log(1 + z) +

1 + 3z

4
log(1 + 3z). (11)

And the super-quantum discord is given by [43]

Dw(ρAB) =
3(1− z)

4
log

(

1− z

4

)

+
(1 + 3z)

4
log

(

1 + 3z

4

)

+1− [
(1− z tanhx)

2
log

(

1− z tanhx

2

)

+
(1 + z tanhx)

2
log

(

1 + z tanhx

2

)

]. (12)

Next, we will evaluate the weak one-way deficit defined above for Werner state. Since Werner state is

rotationally invariant, therefore, one gets the same result for the entropy of the state after measurement for

any measurement basis. Hence, one does not need to do minimization over all measurement bases. In fact,

the d × d-dimensional bipartite Werner state satisfies ρ = (U ⊗ U)ρ(U † ⊗ U †) for all unitary operators U

acting on d-dimensional Hilbert space, and such unitary transformations do not change the entropy of the
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state. Let Π0 = |0〉〈0|,Π1 = |1〉〈1|, the entropy of the post-measurement state is given by

S(
∑

P (±x)

(I ⊗ PB(±x))ρ(I ⊗ PB(±x)))

= S(
∑

P (±x)

(U ⊗ PB(±x)U)ρ(U † ⊗ U †PB(±x)))

= S((U † ⊗ U †)
∑

P (±x)

(U ⊗ PB(±x)U)ρ(U † ⊗ U †PB(±x))(U ⊗ U))

= S(
∑

P (±x)

(I ⊗ U †PB(±x)U)ρ(I ⊗ U †PB(±x)U))

= S(
∑

P (±x)

(I ⊗ (

√

(1∓ tanhx)

2
U †Π0U +

√

(1± tanhx)

2
U †Π1U))

×ρ(I ⊗ (

√

(1∓ tanhx)

2
U †Π0U +

√

(1± tanhx)

2
U †Π1U)))

(13)

and

min
{Πk}

S(
∑

P (±x)

(I ⊗ PB(±x))ρ(I ⊗ PB(±x)))

= S(
∑

P (±x)

(I ⊗ (

√

(1 ∓ tanhx)

2
|0〉〈0|+

√

(1 ± tanhx)

2
|1〉〈1|) ·

ρ(I ⊗ (

√

(1∓ tanhx)

2
|0〉〈0|+

√

(1± tanhx)

2
|1〉〈1|)))

= S(
−z

2 coshx
|01〉〈10|+ 1 + z

4
|10〉〈10|+ 1− z

4
|00〉〈00|

+
1+ z

4
|01〉〈01|+ −z

2 coshx
|10〉〈01|+ 1− z

4
|11〉〈11|). (14)

The eigenvalues of the post-measurement state are λ1 = 1+z
4 + z

2 cosh x
, λ2 = 1+z

4 − z
2 cosh x

, λ3,4 = 1−z
4 .

By Eq.(9), the weak one-way deficit of the Werner state is

∆→
w (ρAB) =

1 + 3z

4
log

(

1 + 3z

4

)

+
1− z

4
log

(

1− z

4

)

−
(

1 + z

4
+

z

2 coshx

)

log

(

1 + z

4
+

z

2 coshx

)

−
(

1 + z

4
− z

2 coshx

)

log

(

1 + z

4
− z

2 coshx

)

. (15)

In Fig.1, we plot the super-quantum correlation and quantum correlation of the Werner state. We find

that super-quantum discord is larger than quantum discord (one-way deficit), and the one-way deficit is

larger than weak one-way deficit(i.e., ∆→
w < ∆→ = D < Dw). Weak one-way deficit approaches to zero

for smaller values of x. super-quantum discord and weak one-way deficit approach to quantum discord

(one-way deficit) for larger values of x.

Therefore, for the case of strong measurements, i.e., x → ∞, we have ∆→
w = ∆→ = D = Dw. It has been

proved that super-quantum discord is greater than the normal discord [43]. But weak one-way deficit is less

than the one-way deficit. This is due to that the weak measurements disturb the subsystem of a composite

system weakly, so that the entropy of composite system does not change much. It cannot capture more

quantum correlation than the von Neumann measurement. As a result, weak measurements do not always

reveal more quantumness.
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(a) (b)

FIG. 1: (Color online) Super-quantum correlation and quantum correlation for the Werner state as a function of z:
super-quantum discord (dashed blue line), quantum discord (one-way deficit) (solid orange line) and weak one-way
deficit (thick black line), (a) x = 0.2, (b) x = 2.

III. GEOMETRICAL DEPICTION OF SUPER-QUANTUM DISCORD FOR BELL-DIAGONAL

STATES WITH WEAK MEASUREMENTS

Now we evaluate the super-quantum discord for two-qubit Bell-diagonal state,

ρAB =
1

4
(I ⊗ I +

3
∑

i=1

ciσi ⊗ σi). (16)

The eigenvalues of ρAB are

λ5 =
1

4
(1 − c1 − c2 − c3), λ6 =

1

4
(1 − c1 + c2 + c3),

λ7 =
1

4
(1 + c1 − c2 + c3), λ8 =

1

4
(1 + c1 + c2 − c3).

The entropy of ρAB is

S(ρAB) = −
8

∑

i=5

λi logλi

= 2− 1− c1 − c2 − c3
4

log(1− c1 − c2 − c3)

−1− c1 + c2 + c3
4

log(1 − c1 + c2 + c3)

−1 + c1 − c2 + c3
4

log(1 + c1 − c2 + c3)

−1 + c1 + c2 − c3
4

log(1 + c1 + c2 − c3). (17)

Let {Πk = |k〉〈k|, k = 0, 1} be the local measurement for the part B along the computational base |k〉.
Then, any weak measurement operators for the part B can be written as

I ⊗ P (±x) =

√

(1∓ tanhx)

2
I ⊗ VΠ0V

† +

√

(1 ± tanhx)

2
I ⊗ VΠ1V

†, (18)

for some unitary V ∈ U(2). But any unitary V can be written, up to a constant phase, as V = tI + i~y · ~σ
with t ∈ R, ~y = (y1, y2, y3) ∈ R3, and t2 + y21 + y22 + y23 = 1.
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After the weak measurement, the state ρAB will change to the ensemble {ρA|PB(±x), p(±x)}. We need

to evaluate ρA|PB(±x) and p(±x). By using the relations [25],

V †σ1V = (t2 + y21 − y22 − y23)σ1 + 2(ty3 + y1y2)σ2 + 2(−ty2 + y1y3)σ3,

V †σ2V = 2(−ty3 + y1y2)σ1 + (t2 + y22 − y21 − y23)σ2 + 2(ty1 + y2y3)σ3,

V †σ3V = 2(ty2 + y1y3)σ1 + 2(−ty1 + y2y3)σ2 + (t2 + y23 − y21 − y22)σ3,

and Π0σ3Π0 = Π0, Π1σ3Π1 = −Π1, ΠjσkΠj = 0 for j = 0, 1, k = 1, 2, from Eqs. (6) and (7), we obtain

p(±x) = 1
2 and

ρA|PB(+x) =
1

2
(I − tanhx(c1z1σ1 + c2z2σ2 + c3z3σ3)),

ρA|PB(−x) =
1

2
(I + tanhx(c1z1σ1 + c2z2σ2 + c3z3σ3)), (19)

where z1 = 2(−ty2 + y1y3), z2 = 2(ty1 + y2y3) and z3 = t2 + y23 − y21 − y22 .

Set θ =
√

|c1z1|2 + |c2z2|2 + |c3z3|2. Then,

S(ρA|PB(+x)) = S(ρA|PB(−x)) = −1− θ tanhx

2
log

1− θ tanhx

2
− 1 + θ tanhx

2
log

1 + θ tanhx

2
(20)

and

Sw(A|{PB(x)}) =
1

2
S(ρA|PB(x)) +

1

2
S(ρA|PB(−x))

= −1− θ tanhx

2
log

1− θ tanhx

2
− 1 + θ tanhx

2
log

1 + θ tanhx

2
. (21)

Let c = max{|c1|, |c2|, |c3|}, then θ ≤
√

|c|2(|z1|2 + |z2|2 + |z3|2) = c. Hence we get

sup
{V }

θ = c. (22)

The range of values allowed for θ is θ ∈ [0, c]. It can be verified that Sw(A|{PB(x)}) is a monotonically

decreasing function of θ in the interval of [0, c]. The minimal value of Sw(A|{PB(x)} can be attained at

point c,

min
{ΠB

i
}
Sw(A|{PB(x)}) = −1− c tanhx

2
log

1− c tanhx

2
− 1 + c tanhx

2
log

1 + c tanhx

2
. (23)

Then, by Eq. (4), (17) and S(ρB) = 1, the super-quantum discord of Bell-diagonal states is given by

Dw(ρAB) = min
{ΠB

i
}
Sw(A|{PB(x)})− S(A|B)

=
1− c1 − c2 − c3

4
log(1 − c1 − c2 − c3) +

1− c1 + c2 + c3
4

log(1 − c1 + c2 + c3)

+
1 + c1 − c2 + c3

4
log(1 + c1 − c2 + c3) +

1 + c1 + c2 − c3
4

log(1 + c1 + c2 − c3)

−1− c tanhx

2
log(1− c tanhx) − 1 + c tanhx

2
log(1 + c tanhx). (24)

In Fig.2, we plot the surfaces of the super-quantum discord and the quantum discord for the Bell-diagonal

state at the same values of parameters in (a),(b) and (c). It is shown that the surface of super-quantum

discord is surrounded by the surface of quantum discord for smaller values of x. The surfaces of super-

quantum discord approaches to the surfaces of quantum discord for larger values of x. On the other hand,

if we take c1 = 0.3, c2 = −0.4, c3 = 0.56, then in (d) one finds that the super discord is greater than the

normal discord for smaller values of x and approaches to the normal discord for larger values of x.
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(a) (b)

(c) (d)

FIG. 2: (Color online) (a), (b) and (c) are surfaces of constant quantum discord and super-quantum discord for
Bell-diagonal state: surface of quantum discord (orange surface), surface of super-quantum discord (blue surface),
(a) Dw = D = 0.15, x = 0.2; (b) Dw = D = 0.15, x = 1.5; (c) Dw = D = 0.15, x = 3. (d) super-quantum discord
(dashed blue line), quantum discord (solid orange line), c1 = 0.3, c2 = −0.4, c3 = 0.56.

IV. DYNAMICS OF SUPER-QUANTUM CORRELATION AND QUANTUM CORRELATION

FOR THE WERNER STATE AND BELL-DIAGONAL STATES UNDER LOCAL

NONDISSIPATIVE CHANNELS

In the following, we consider that the Bell-diagonal state undergoes the phase flip channel [46], with

the Kraus operators Γ
(A)
0 = diag(

√

1− p/2,
√

1− p/2) ⊗ I, Γ
(A)
1 = diag(

√

p/2,−
√

p/2) ⊗ I, Γ
(B)
0 = I⊗

diag(
√

1− p/2,
√

1− p/2), Γ
(B)
1 = I⊗ diag(

√

p/2,−
√

p/2), where p = 1−exp(−γt), γ is the phase damping

rate [46, 47].

Let ε(·) represents the operator of decoherence. Then, under the phase flip channel, we have

ε(ρAB) =
1

4
(I ⊗ I + (1− p)2c1σ1 ⊗ σ1

+(1− p)2c2σ2 ⊗ σ2 + c3σ3 ⊗ σ3). (25)
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Werner state under the phase flip channel is given by

ε(ρAB) =
1

4
(I ⊗ I − (1− p)2zσ1 ⊗ σ1

−(1− p)2zσ2 ⊗ σ2 − zσ3 ⊗ σ3). (26)

The super-quantum discord of the Werner state under the phase flip channel is given by

NDw(ρAB) = (
1− z + 4pz − 2p2z

4
) log(

1− z + 4pz − 2p2z

4
)

+(
1 + 3z − 4pz + 2p2z

4
) log(

1 + 3z − 4pz + 2p2z

4
)

+
1− z

2
log(

1− z

4
) + 1

−1 + z tanhx

2
log

1 + z tanhx

2

−1− z tanhx

2
log

1− z tanhx

2
. (27)

The quantum discord (one-way deficit) of the Werner state under the phase flip channel is given by

ND(ρAB) = (
1− z + 4pz − 2p2z

4
) log(

1− z + 4pz − 2p2z

4
)

+(
1 + 3z − 4pz + 2p2z

4
) log(

1 + 3z − 4pz + 2p2z

4
)

+
1− z

2
log(

1 − z

4
) + 1− 1 + z

2
log

1 + z

2
− 1− z

2
log

1− z

2
. (28)

The weak one-way deficit of the Werner state under the phase flip channel is given by

N∆→
w (ρAB) = (

1 − z + 4pz − 2p2z

4
) log(

1− z + 4pz − 2p2z

4
)

+(
1 + 3z − 4pz + 2p2z

4
) log(

1 + 3z − 4pz + 2p2z

4
)

−(
1 + z

4
+

(1− p)2z

2 coshx
) log(

1 + z

4
+

(1− p)2z

2 coshx
)

−(
1 + z

4
− (1− p)2z

2 coshx
) log(

1 + z

4
− (1− p)2z

2 coshx
). (29)

In Fig.3, as an example, the dynamic behaviors of super-quantum correlation and quantum correlation of

the Werner state under the phase flip channel are depicted for x = 0.5 and x = 3. Against the decoherence,

we find that super-quantum discord is greater than quantum discord (one-way deficit) and quantum discord

(one-way deficit) is greater than weak one-way deficit. Super-quantum correlation including super-quantum

discord and weak one-way deficit approaches to quantum correlation including quantum discord (one-way

deficit) for larger x under the phase flip channel. As z increases, super-quantum correlation and quantum

correlation increase. Then, as p increases, super-quantum correlation and quantum correlation decrease.

Next, we consider the Bell-diagonal state under the phase flip channel. Let us assume |c1| < |c2| < |c3|.
Super-quantum discord and quantum discord for the Bell-diagonal are given by

NDw(ρAB) =
1− (1− p)2c1 − (1− p)2c2 − c3

4
log(1− (1 − p)2c1 − (1− p)2c2 − c3)

+
1− (1− p)2c1 + (1 − p)2c2 + c3

4
log(1− (1− p)2c1 + (1− p)2c2 + c3)

+
1 + (1− p)2c1 − (1 − p)2c2 + c3

4
log(1 + (1− p)2c1 − (1− p)2c2 + c3)

+
1 + (1− p)2c1 + (1 − p)2c2 − c3

4
log(1 + (1− p)2c1 + (1− p)2c2 − c3)

−1− c3 tanhx

2
log(1− c3 tanhx)−

1 + c3 tanhx

2
log(1 + c3 tanhx), (30)
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(a) (b)

FIG. 3: (Color online) Super-quantum correlation and quantum correlation for the Werner state under the phase
flip channel: super-quantum discord (blue surface), quantum discord (one-way deficit) (orange surface) and weak
one-way deficit (black surface) as a function of z and p: (a) x = 0.5, (b) x = 3.

ND(ρAB) =
1− (1− p)2c1 − (1− p)2c2 − c3

4
log(1 − (1− p)2c1 − (1− p)2c2 − c3)

+
1− (1 − p)2c1 + (1− p)2c2 + c3

4
log(1− (1 − p)2c1 + (1− p)2c2 + c3)

+
1 + (1 − p)2c1 − (1− p)2c2 + c3

4
log(1 + (1 − p)2c1 − (1− p)2c2 + c3)

+
1 + (1 − p)2c1 + (1− p)2c2 − c3

4
log(1 + (1 − p)2c1 + (1− p)2c2 − c3)

−1− c3
2

log(1− c3)−
1 + c3

2
log(1 + c3). (31)

We plot in Fig.4 the super-quantum discord and quantum discord for the Bell-diagonal state under the phase

flip channel. We find in (a) that super-quantum discord is greater than quantum discord. They approach

together for bigger values of x. The super-quantum discord under the phase flip channel as a function of x

and p is shown in (b): the super-quantum discord decreases as x and p increase.

(a) (b)
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FIG. 4: (Color online) Super-quantum discord and quantum discord for the Bell-Diagonal state under the phase flip
channel: (a) super-quantum discord (dashed blue line) and quantum discord (one-way deficit) (solid orange line) as
a function of p for x = 2.5, c1 = 0.3, c2 = −0.4, c3 = 0.56. (b) Super-quantum discord as a function of x and p for
c1 = 0.3, c2 = −0.4, c3 = 0.56.

V. SUMMARY

We have proposed the weak one-way deficit under weak measurement. The weak one-way deficit has

been calculated analytically for Werner state. We find that for Werner states, while the standard quantum

discord and the one-way deficit are the same, the weak one-way deficit is smaller than the standard one-way

deficit, which contrasts with the fact that super-quantum discord is larger than quantum discord. In this

sense, for weak measurement, weak one-way deficit and super-quantum discord capture different aspects of

quantum correlations. Based on analytic and numerical results, the geometry of super-quantum discord for

Bell-diagonal state has been explicitly shown in terms of figures. From the figures, we have found that the

surface of super-quantum discord is surrounded by the surface of quantum discord for smaller values of x

and they approach together for larger values of x. The dynamics of quantum correlations for phase flipping

channel has been also studied.

The quantification of various correlations is a basic problem for quantum information science. Various

measures provide us different perspectives about quantum and classical correlations. For the weak measure-

ment case, the behaviors of quantum correlations vary a lot with the strength of the weak measurement.

However, it seems that those measures can still be applied to various protocols in quantum information

processing and identify the importance of the quantum correlations in those protocols.
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