Skip to main content
Log in

Dirac’s Hamiltonian and Bogoliubov’s Hamiltonian as representation of the braid group

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, it is shown that Dirac’s Hamiltonian and Bogoliubov’s Hamiltonian both can be braid group matrix representations which are new type of four-dimensional matrix representation of the braid group in comparison with the well-known type (Ge et al. in Int J Mod Phys A 6:3735, 1991; Ge et al. in J Phys A 24:2679, 1991; Ge and Xue in Phys Lett A 152:266, 1991; Ge et al. J Phys A 25:L807 1992) related to the usual spin models. The Dirac’s Hamiltonian is for a free electron with mass m while the Bogoliubov’s Hamiltonian is for quasiparticles in \(^{3}He\)-B with the same free energy and mass being \(\frac{m}{2}\) which depends on the momentum p. And this type is known that the braid matrices are related to the anyon description for FQHE with \(\nu =\frac{1}{2}\) (Nayak et al. in Rev Mod Phys 80, 2008; Slingerland and Bais in Nucl Phys B 612:229, 2001), this may mean that Dirac particle could be decomposed into anyons based on the braid group relation. We also get the Temperley-Lieb matrix representations corresponding to the braid group matrix representations and investigate the entanglement and Berry phase of the corresponding Dirac system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ge, M.L., Wu, Y.S., Xue, K.: Explict trigonometric Yang-Baxterization. Int. J. Mod. Phys. A 6, 3735 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ge, M.L., Liu, G.C., Xue, K.: New solutions of Yang-Baxter equation: Birman-Wenzl algebra and quantum group structures. J. Phys. A 24, 2679 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ge, M.L., Xue, K.: Rational Yang-Baxterization of braid group representations. Phys. Lett. A 152, 266 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Ge, M.L., Wu, A.C.T.: Quantum groups constructed from the nonstandard braid group representations in the Faddeev-Reshetikhin-Takhtajan approach. J. Phys. A 25, L807 (1992)

  5. Nayak, C., Simon, S. H., Stern, A., Freedman, M., Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Google Scholar 

  6. Slingerland, J.K., Bais, F.A.: Quantum groups and nonabelian braiding in quantum hall systems. Nucl. Phys. B 612, 229 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Prasolov, V.V., Sossinsky, A.B.: Knots, Links, Braids and 3-Manifolds. Am. Math. Soc.-Transl. Math. Monogr. 154, 1–237 (1997)

    Google Scholar 

  8. Akutsu, Y., Deguchi, T., Wadati, M.: The Yang-Baxter relation: a new tool for knot theory. In: Yang. C.N., Ge, M.L. (eds) Braid Group, Knot Theory and Statistical Mechanics, p. 151. World Scientific Publ Co Ltd, Singapore (1989)

  9. Dye, H.A.: Unitary solutions to the Yang-Baxter equation in dimension four. Quant. Inf. Process. 2, 117–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kauffman, L.H., Lomonaco, S.J., Jr.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Google Scholar 

  11. Zhang, Y., Kauffman, L.H., Ge, M.L.: Yang-Baxterization, Universal quantum Gate and Hamiltonians. Quantum Inf. Process. 4, 159–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Franko, J., Rowell, E.C., Wang, Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theory Ramif. 15, 413–428 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, H., Xu, D.-Z., Huang, J.-F., Sun, C.-P.: Coherent excitation transfer via the dark-state channel in a bionic system. Light: Sci. Appl. (2012) 1, e2 doi:10.1038/lsa.2012.2

  14. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  15. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hosseini, M., Rebić, S., Sparkes, B.M., Twamley, J., Buchler, B.C., Lam, P.K.: Memory-enhanced noiseless cross-phase modulation. Light: Sci. Appl. 1, e40 (2012). doi:10.1038/lsa.2012.40

  17. Baxter, R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193–228 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Zhang, Y., Kauffman, L.H., Ge, M.L.: Universal quantum gate, Yang Baxterization and Hamiltonian. Int. J. Quantum Inf. 3, 669 (2005)

    Article  MATH  Google Scholar 

  19. Zhang, Y., Ge, M.L.: GHZ states, almost-complex structure and Yang-Baxter equation. Quantum Inf. Process. 6, 363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge, M.L.: From extraspecial two-groups to GHZ states. e-print quant-ph/0706.1761 (2007)

  21. Chen, J.L., Xue, K., Ge, M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A. 76, 042324 (2007)

    Article  ADS  Google Scholar 

  22. Chen, J.L., Xue, K., Ge, M.L.: Berry phase and quantum criticality in Yang-Baxter systems. Ann. Phys. 323, 2614 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Temperley, H.N.V., Lieb, E.H.: Relations between the ’Percolation’ and ’Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ’Percolation’ problem. Proc. R. Soc. Lond. A 322, 251 (1971)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Pasquier, V.: Two-dimensional critical systems labelled by Dynkin diagrams. Nucl. Phys. B 285, 162 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  25. Pasquier, V.: Lattice derivation of modular invariant partition functions on, the torus. J. Phys. A 20, L1229 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  26. Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SOS model and generalized Rogers-Ramanujan-type identities. J. Stat. Phys. 35, 193 (1984)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Klümper, A.: New results for q-state vertex models and the pure biquadratic spin-1 hamiltonian. Europhys. Lett. 9, 815 (1989)

    Google Scholar 

  28. Kulish, P.P.: On spin systems related to the temperley-lieb algebra. J. Phys. A: Math. Gen. 36, L489–l493 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Volovik, G.E.: Exotic Properties of Superfluid \(^{3}He\). World Scientific, Singapore p. 77 (1992)

  30. Xie, B.X., Xue, K., Ge, M.-L.: Bogoliubov’s Hamiltonian as a derivative of Dirac’s Hamiltonian via a braid relation. Phys. Rev. A 77, 064101 (2008)

    Google Scholar 

  31. Yang, C.N.: Communication with W. W. Boone Regarding the Dirac Game (1973)

  32. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sarma, S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Slingerland, J.K., Bais, F.A.: Quantum groups and nonabelian braiding in quantum Hall systems. Nucl. Phys. B 612, 229 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Kauffman, L.H.: Knots in Physics. World Scientific Pub. Singapore (1991)

  35. Shankar, R., Mathur, H.: Thomas precession, Berry potential, and the Meron. Phys. Rev. Lett. 73, 1565–1569 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  37. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A. 392, 45 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by NSF of China (Grants No. 11175043, 11305033) and the Fundamental Research Funds for the Central Universities (Grants No. 11QNJJ012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taotao Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Ren, H. & Xue, K. Dirac’s Hamiltonian and Bogoliubov’s Hamiltonian as representation of the braid group. Quantum Inf Process 13, 391–399 (2014). https://doi.org/10.1007/s11128-013-0657-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0657-y

Keywords

Navigation