Skip to main content
Log in

Quantum secret sharing for general access structures based on multiparticle entanglements

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the implementation of quantum secret sharing (QSS) schemes for general access structures rather than the threshold structure. Using multiparticle entanglements in high-dimensional system, three novel multipartite QSS formalisms for general access structures are proposed. The method of how to build general access structures in these formalisms is discussed. A major feature of these formalisms is that a variety of secret sharing schemes with different access structures can be constructed depending on the dealer’s wish. Besides, hierarchic and threshold authorized structures can also be built. All of which make our formalisms highly flexible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National computer conference, pp. 313–317. New York (1979)

  2. Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers Systems and Signal Processing, pp. 175–179. Bangalore, India (1984)

  4. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  5. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  6. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  7. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bandyopadhyay, S.: Teleportation and secret sharing with pure entangled states. Phys. Rev. A 62, 012308 (2000)

    Article  ADS  Google Scholar 

  9. Karimipour, V., Bahraminasab, A., Bagherinezhad, S.: Entanglement swapping of generalized cat states and secret sharing. Phys. Rev. A 65, 042320 (2002)

    Article  ADS  Google Scholar 

  10. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Zhou, H.Y.: Circular quantum secret sharing. J. Phys. A: Math. Gen. 39, 14089 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Hao, L., Li, J.L., Long, G.L.: Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution. Sci. China Phys. Mech. Astron. 53, 491 (2010)

    Article  ADS  Google Scholar 

  13. Tsai, C.W., Hwang, T.: Multi-party quantum secret sharing based on two special entangled states. Sci. China Phys. Mech. Astron. 55, 460 (2012)

    Article  ADS  Google Scholar 

  14. Massoud, H., Elham, F.: A novel and efficient multiparty quantum secret sharing scheme using entangled states. Sci. China Phys. Mech. Astron. 55, 1828 (2012)

    Article  ADS  Google Scholar 

  15. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Undeniable quantum state sharing with a five-atom cluster state in cavity QED. Sci. China Phys. Mech. Astron. 55, 2439 (2012)

    Article  ADS  Google Scholar 

  16. Jiang, M., et al.: An efficient scheme for multi-party quantum state sharing via non-maximally entangled states. Chin. Sci. Bull. 57, 1089 (2012)

    Article  Google Scholar 

  17. Salemian, S., Mohammadnejad, S.: An error-free protocol for quantum entanglement distribution in long-distance quantum communication. Chin. Sci. Bull. 56, 618 (2011)

    Article  Google Scholar 

  18. Song, S.Y., Wang, C.: Recent development in quantum communication. Chin. Sci. Bull. 57, 4694 (2012)

    Article  Google Scholar 

  19. Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Zhou, N.R., Song, H.C., Gong, L.H.: Continuous variable quantum secret sharing via quantum teleportation. Int. J. Theor. Phys. 1–11 (2013) doi:10.1007/s10773-013-1730-0

  21. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

  22. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78, 062307 (2008)

    Article  ADS  Google Scholar 

  23. Schmid, C., et al.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  24. Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21, 16663 (2013)

    Article  ADS  Google Scholar 

  25. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284, 3639 (2011)

    Article  ADS  Google Scholar 

  26. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 42309 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  27. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82, 62315 (2010)

    Article  ADS  Google Scholar 

  28. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In Goldwasser,S. (ed.): Advances in Cryptology CRYPTO’ 88, pp. 27–35. Springer, Berlin (1990)

  29. Smith. A.D.: Quantum secret sharing for general access structures. arXiv:quant-ph/0001087. http://arxiv.org/abs/quant-ph/000187 (2000)

  30. Nascimento, A.C.A., Mueller-Quade, J., Imai, H.: Improving quantum secret-sharing schemes. Phys. Rev. A 64, 042311 (2001)

    Article  ADS  Google Scholar 

  31. Singh, S.K., Srikanth, R.: Generalized quantum secret sharing. Phys. Rev. A 71, 012328 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  32. Bennett, C.H., et al.: Teleportation an unknown quantum state via dual classical and Einstein-Podolsky-Rosem channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Wang, M.M., Chen, X.B., Luo, S.S., Yang, Y.X.: Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Inf. Process 11, 1715 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Yu, I.C., Lin, F.L., Huang, C.Y.: Quantum secret sharing with multilevel mutually (un)biased bases. Phys. Rev. A 78, 012344 (2008)

    Article  ADS  Google Scholar 

  35. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  36. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Ann. Phys. 191, 363 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  37. Pittenger, A.O., Rubin, M.H.: Mutually unbiased bases, generalized spin matrices and separability. Linear Algebra Appl. 390, 255 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery-Buzcaronek-Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  39. Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)

    Article  ADS  Google Scholar 

  40. Deng, F.G., Li, X.H., Zhou, H.Y.: Efficient high-capacity quantum secret sharing with two-photon entanglement. Phys. Lett. A 372, 1957 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Li, X.H., Deng, F.G., Zhou, H.Y.: Controlled teleportation of an arbitrary multi-qudit state in a general form with d-dimensional Greenberger-Horne-Zeilinger states. Chin. Phys. Lett. 24, 1151 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by NSFC (Grant Nos. 61272514, 61003287, 61170272, 61121061, 61161140320), NCET (Grant No. NCET-13-0681), the Specialized Research Fund for the Doctoral Program of Higher Education (20100005120002), the Fok Ying Tong Education Foundation (No. 131067) and the Fundamental Research Funds for the Central Universities (No. BUPT2012RC0221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, MM., Chen, XB. & Yang, YX. Quantum secret sharing for general access structures based on multiparticle entanglements. Quantum Inf Process 13, 429–443 (2014). https://doi.org/10.1007/s11128-013-0660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0660-3

Keywords

Navigation