Skip to main content
Log in

Three-party remote state preparation schemes based on entanglement

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

By exploiting the entanglement correlation in quantum mechanics, two three-party remote state preparation (RSP) schemes are proposed. One is three-party remote preparation of a single-particle quantum state, and the other is three-party remote preparation of a two-particle entangled state. In the proposed schemes, the sender Alice knows the quantum states to be prepared, while the receivers Bob and Charlie do not know the quantum states; Alice performs measurement and unitary operations on her own particles with two three-particle GHZ states as the quantum channel. According to Alice’s measurement results, Bob and Charlie measure their own particles on the corresponding quantum measurement bases and perform unitary operations on the corresponding particles to reconstruct the quantum states, respectively. Compared with multiparty joint remote preparation and two-party RSP of a quantum state, the proposed schemes realize quantum multicast communication successfully, which enables Bob and Charlie to obtain the prepared quantum states simultaneously in the case of just knowing Alice’s measurement results, while Bob and Charlie do not know each other’s prepared quantum states. It is shown that only three classical bits are required for the two proposed RSP schemes when Bob and Alice introduce an auxiliary particle, respectively, and the proposed schemes are secure after the quantum channel authentication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Google Scholar 

  3. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Li, W.L., Li, C.F., Guo, G.C.: Probabilistic teleportation and entanglement matching. Phys. Lett. A 61(3), 034301 (2000)

    Google Scholar 

  5. Joonwoo, B., Jyoungwan, J., Jitae, K., Chihoon, Y., Younghun, K.: Three-party quantum teleportation with asymmetric states. Chaos Solitons Fractals 24(4), 1047–1052 (2005)

    Article  MATH  Google Scholar 

  6. Ishizaka, S., Hiroshima, T.: Quantum teleportation scheme by selecting one of multiple output ports. Phys. Lett. A 79(4), 042306 (2009)

    Google Scholar 

  7. Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)

    Article  ADS  Google Scholar 

  8. Kim, Y.H., Kulik, S.P., Shih, Y.H.: Quantum teleportation of a polarization state with a complete Bell state, measurement. Phys. Rev. Lett. 86(7), 1370–1373 (2001)

    Article  ADS  Google Scholar 

  9. Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54–58 (2004)

    Article  ADS  Google Scholar 

  10. Zhang, Q., Goebel, A., Wagenknecht, C., Chen, Y.A., Zhao, B., Yang, T., Mair, A., Schmiedmayer, J., Pan, J.W.: Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  12. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63(1), 014302 (2001)

    Article  ADS  Google Scholar 

  13. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62(1), 012313 (2000)

    Article  ADS  Google Scholar 

  14. Liu, J.M., Wang, Y.Z.: Remote preparation of a two-particle entangled state. Phys. Lett. A 316(3–4), 159–167 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Wang, D., Liu, Y.M., Zhang, Z.J.: Remote preparation of a class of three-qubit states. Opt. Commun. 281(4), 871–875 (2008)

    Article  ADS  Google Scholar 

  16. Ma, S.Y., Chen, X.B., Luo, M.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284(16–17), 4088–4093 (2011)

    Article  ADS  Google Scholar 

  17. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B At. Mol. Opt. Phys. 40(18), 3719 (2007)

    Article  ADS  Google Scholar 

  18. Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17(1), 27–33 (2008)

    Article  ADS  Google Scholar 

  19. Tao, Y., Pan, W., Luo, B.: A scheme for remote state preparation with low classical communication cost. Acta Phys. Sin. 57(4), 2016–2020 (2008)

    Google Scholar 

  20. Hou, K., Wang, J., Lu, Y.L., Shi, S.H.: Joint remote preparation of a multipartite GHZ-class state. Int. J. Theor. Phys. 48(7), 2005–2015 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, B.A.: Joint remote state preparation via \(W\) and \(W\)-type states. Opt. Commun. 283(20), 4113–4117 (2010)

  22. Song, J.F., Wang, Z.Y.: Controlled remote preparation of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50(8), 2410–2425 (2011)

    Article  MATH  Google Scholar 

  23. Cao, T.B., Nung, V.D., Nguyen, B.A.: Deterministic joint remote preparation of an arbitrary qubit via Einstein–Podolsky–Rosen pairs. Int. J. Theor. Phys. 51(7), 2272–2281 (2012)

    Article  MATH  Google Scholar 

  24. Long, L.R., Zhou, P., Li, Z., Yin, C.L.: Multiparty joint remote preparation of an arbitrary GHZ-class state via positive operator-valued measurement. Int. J. Theor. Phys. 51(8), 2438–2446 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 10647133 and 11247213), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20122BAB201031), the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) (Grant No. 20122BCB23002), the Research Foundation of the Education Department of Jiangxi Province (Grant No’s. GJJ11339 and GJJ13057), the Open Project of Key Laboratory of Photoeletronics & Telecommunication of Jiangxi Province (Grant No. 2013003), and the Innovation Project of Jiangxi Graduate Education (Grant No. YC2012-S009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan-Run Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, NR., Cheng, HL., Tao, XY. et al. Three-party remote state preparation schemes based on entanglement. Quantum Inf Process 13, 513–526 (2014). https://doi.org/10.1007/s11128-013-0667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0667-9

Keywords

Navigation