Skip to main content
Log in

Minimal resources identifiability and estimation of quantum channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We characterize and discuss the identifiability condition for quantum process tomography, as well as the minimal experimental resources that ensure a unique solution in the estimation of quantum channels, with both direct and convex optimization methods. A convenient parametrization of the constrained set is used to develop a globally converging Newton-type algorithm that ensures a physically admissible solution to the problem. Numerical simulation is provided to support the results and indicate that the minimal experimental setting is sufficient to guarantee good estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. These topics could also be studied from an abstract, frame-theoretical viewpoint [14]: however, in order to maintain contact with well-established notations and concepts in quantum information theory, we choose a more direct approach.

  2. If the optimization is constrained to \(\mathcal{A}_+\cap \mathcal{I},\) we are guaranteed that \(f_{jk}\) will tend to be positive for a sufficiently large numbers of trials.

References

  1. Aiello, A., Puentes, G., Voigt, D., Woerdman, J.P.: Maximum-likelihood estimation of Mueller matrices. Opt. Lett. 31(6), 817–819 (2006)

    Article  ADS  Google Scholar 

  2. Alicki, R., Lendi, K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (1987)

    MATH  Google Scholar 

  3. Altafini, C.: Feedback stabilization of isospectral control systems on complex flag manifolds: application to quantum ensembles. IEEE Trans. Autom. Control 11(52), 2019–2028 (2007)

    Article  MathSciNet  Google Scholar 

  4. Altafini, C., Ticozzi, F.: Modeling and control of quantum systems: an introduction. IEEE Trans. Autom. Control 57(8), 1898–1917 (2012)

    Article  MathSciNet  Google Scholar 

  5. Belavkin, V.P.: Towards the theory of control in observable quantum systems. Autom. Remote Control 44, 178–188 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Benenti, G., Strini, G.: Simple representation of quantum process tomography. Phys. Rev. A 80(2), 022–318 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Book  MATH  Google Scholar 

  8. Bisio, A., Chiribella, G., D’Ariano, G.M., Facchini, S., Perinotti, P.: Optimal quantum tomography of states, measurements, and transformations. Phys. Rev. Lett. 102, 010,404 (2009)

    Google Scholar 

  9. Bongioanni, I., Sansoni, L., Sciarrino, F., Vallone, G.: Experimental quantum process tomography of non-trace-preserving maps. Phys. Rev. A 82(4), 042–307 (2010)

    Article  Google Scholar 

  10. Boulant, N., Havel, T.F., Pravia, M.A., Cory, D.G.: Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points. Phys. Rev. A 67(4), 042–322 (2003)

    Article  Google Scholar 

  11. Bouwmeester, D., Ekert, A., Zeilinger, A. (eds.): The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer, Berlin (2000)

    MATH  Google Scholar 

  12. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  13. Busch, P.: Informationally complete sets of physical quantities. Int. J. Theor. Phys. 30(9), 1217–1227 (1991)

    Article  MathSciNet  Google Scholar 

  14. Casazza, P.: The art of frame theory. Taiwan. J. Math. 4(2), 129–201 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10, 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  17. Dahleh, M., Pierce, A., Rabitz, H., Pierce, A.: Control of molecular motion. Proc. IEEE 84, 6–15 (1996)

    Article  Google Scholar 

  18. D’Alessandro, D.: Introduction to Quantum Control and Dynamics. Applied Mathematics & Nonlinear Science. Chapman & Hall/CRC, London (2007)

    Book  Google Scholar 

  19. D’Alessandro, D., Dahleh, M.: Optimal control of two level quantum system. IEEE Trans. Autom. Control 46(6), 866–876 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. D’Ariano, G.M., Lo Presti, P.: Quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum operation. Phys. Rev. Lett. 86, 4195–4198 (2001)

    Article  ADS  Google Scholar 

  21. D’Ariano, G.M., Maccone, L., Paris, M.G.A.: Quorum of observables for universal quantum estimation. J. Phys. A Math. Gen. 34(1), 93 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Doherty, A., Doyle, J., Mabuchi, H., Jacobs, K., Habib, S.: Robust control in the quantum domain. Proc. IEEE Conf. Decis. Control 1, 949–954 (2000)

    Google Scholar 

  23. Fiurášek, J., Hradil, Z.: Maximum-likelihood estimation of quantum processes. Phys. Rev. A 63(2), 020–101 (2001). doi:10.1103/PhysRevA.63.020101

    Google Scholar 

  24. Holevo, A.: Statistical Structure of Quantum Theory. Lecture Notes in Physics; Monographs, vol. 67. Springer, Berlin (2001)

    Book  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, New York (1990)

    MATH  Google Scholar 

  26. James, D.F.V., Kwiat, P.G., Munro, W.J., White, A.G.: Measurement of qubits. Phys. Rev. A 64, 052–312 (2001)

    Article  Google Scholar 

  27. James, M., Nurdin, H., Petersen, I.: \({H}^{\infty }\) control of linear quantum stochastic systems. IEEE Trans. Autom. Control 53(8), 1787–1803 (2008)

    Article  MathSciNet  Google Scholar 

  28. Khaneja, N., Brockett, R., Glaser, S.: Time optimal control of spin systems. Phys. Rev. A 63, 032–308 (2001)

    Article  Google Scholar 

  29. Kosmol, P.: Optimierung und Approximation. de Gruyter, Berlin (1991)

    MATH  Google Scholar 

  30. Kraus, K.: States, Effects, and Operations: Fundamental Notions of Quantum Theory. Lecture notes in Physics. Springer, Berlin (1983)

    Book  Google Scholar 

  31. Mohseni, M., Rezakhani, A.T., Lidar, D.A.: Quantum-process tomography: resource analysis of different strategies. Phys. Rev. A 77(3), 032,322 (2008)

    Google Scholar 

  32. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  33. Nurdin, H., James, M., Petersen, I.: Coherent quantum LQG control. Automatica 45, 1837–1846 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Paris, M.G.A., R̆ehác̆ek, J. (eds.): Quantum States Estimation, Lecture Notes Physics, vol. 649. Springer, Berlin (2004)

    Google Scholar 

  35. Petz, D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)

    MATH  Google Scholar 

  36. R̆ehác̆ek, J., Englert, B.G., Kaszlikowski, D.: Minimal qubit tomography. Phys. Rev. A 70(5), 052,321 (2004)

    Google Scholar 

  37. Sacchi, M.F.: Maximum-likelihood reconstruction of completely positive maps. Phys. Rev. A 63(5), 054–104 (2001). doi:10.1103/PhysRevA.63.054104

    Article  MathSciNet  Google Scholar 

  38. Scott, A.J.: Optimizing quantum process tomography with unitary 2-designs. J. Phys. A Math. Theor. 41, 055–308 (2008)

    Article  MathSciNet  Google Scholar 

  39. Ticozzi, F., Nishio, K., Altafini, C.: Stabilization of stochastic quantum dynamics via open- and closed-loop control. IEEE Trans. Autom. Control 58(1), 74–85

  40. Ticozzi, F., Viola, L.: Analysis and synthesis of attractive quantum Markovian dynamics. Automatica 45, 2002–2009 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. van Handel, R., Stockton, J.K., Mabuchi, H.: Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50(6), 768–780 (2005)

    Article  MathSciNet  Google Scholar 

  42. Villoresi, P., Jennewein, T., Tamburini, F., M. Aspelmeyer, C.B., Ursin, R., Pernechele, C., Luceri, V., Bianco, G., Zeilinger, A., Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and earth. New J. Phys. 10, 033,038 (2008)

  43. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge, MA (2009)

    Book  MATH  Google Scholar 

  44. Ziman, M.: Incomplete quantum process tomography and principle of maximal entropy. Phys. Rev. A 78, 032–118 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ziman, M., Plesch, M., Bužek, V., Štelmachovič, P.: Process reconstruction: From unphysical to physical maps via maximum likelihood. Phys. Rev. A 72(2), 022–106 (2005)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alberto Dall’Arche, Andrea Tomaello, Prof. Paolo Villoresi and Dr. Giuseppe Vallone for stimulating discussions on the topics of this paper. Work partially supported by the QFuture research grant of the University of Padova, and by the Department of Information Engineering research project “QUINTET.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Zorzi.

Appendix: global convergence of the Newton algorithm

Appendix: global convergence of the Newton algorithm

Let us consider the identification problem in (20) with the ML functional (24). To prove the convergence of the corresponding Newton algorithm, we need of the following result.

Proposition 5

Consider a function \(f: X \subset \mathbb {R}^n\rightarrow \mathbb {R}\) twice differentiable on \(X\) with \(H_x\) the Hessian of \(f\) at \(x\). Suppose moreover that \(f\) is strongly convex on a set \(D\subset X\), i.e., there exists a constant \(m> 0\) such that \(H_x\ge mI\) for \(x\in D \), and \(H_x\) is Lipschitz continuous on \( D \). Let \(\{x_i\}\in D\) be the sequence generated by the Newton algorithm. Under these assumptions, Newton’s algorithm with backtracking converges globally. More specifically, \(\{x_i\}\) decreases in linear way for a finite number of steps and converges in a quadratic way to the minimum point after the linear stage.

Proof

See [12, 9.5.3, p. 488]. \(\square \)

We proceed in the following way: Identify a compact set \(D\) such that \(\underline{\theta }_l \in D\) and prove that the Hessian is coercive and Lipschitz continuous on \(D\). We then apply Proposition A.1 in order to prove the convergence

Since \(\underline{\theta }_0\in \hbox {int} \left( \mathcal {C} \right) \) we consider the set

$$\begin{aligned} D:=\{\underline{\theta }\in \mathbb {R}^{d^4-d^2} \;|\; G_q(\underline{\theta })\le G_q(\underline{\theta }_0)\}. \end{aligned}$$
(38)

The presence of the backtracking stage in the algorithm guarantees that the sequence \(G_q(\underline{\theta }_0),G_q(\underline{\theta }_1), \ldots \) is decreasing. Thus, \(\underline{\theta }_l\in D,\,\forall l\ge 0\).

Proposition 6

The following facts hold:

  1. 1.

    \(D\) is a compact set.

  2. 2.

    \(H_{\underline{\theta }}\) is coercive and bounded on \(D\), namely there exist \(s,S>0\) such that

    $$\begin{aligned} sI\le H_{\underline{\theta }} \le \hbox {SI} \quad \forall \; \underline{\theta }\in D. \end{aligned}$$
    (39)
  3. 3.

    \( H_{\underline{\theta }}\) is Lipschitz continuous on \(D\).

Proof

(1) \(D\) is contained into the bounded set \(\mathcal {C}\). Since \(D\) is a finite-dimensional space, it is sufficient to show that

$$\begin{aligned} \lim _{\underline{\theta }\rightarrow \partial \mathcal {C}} G_q(\underline{\theta })=+\infty . \end{aligned}$$
(40)

Here, we have three kind of boundary: \( \partial \mathcal {I}\cap \hbox {int} \left( A_+ \right) ,\; \hbox {int} \left( \mathcal {I} \right) \cap \partial A_+\) and \( \partial \mathcal {I}\cap \partial A_+\). Notice that, \(\log \det (\chi (\underline{\theta }))\) takes finite values on \(\partial \mathcal {J}\cap \hbox {int} \left( A_+ \right) \). Accordingly, taking (21) into account,

$$\begin{aligned} \lim _{\underline{\theta }\rightarrow \partial \mathcal {I}\cap \hbox {int} \left( A_+ \right) }G_q(\underline{\theta })=q \lim _{\underline{\theta }\rightarrow \partial \mathcal {I}\cap \hbox {int} \left( A_+ \right) } J(\underline{\theta })=+\infty . \end{aligned}$$
(41)

Then, \(\hbox {int} \left( \mathcal {I} \right) \cap \partial A_+\) is the set of \(\underline{\theta }\) for which \(J\) is bounded and there exists at least one eigenvalue of \(\chi (\underline{\theta })\) equal to zero. Thus,

$$\begin{aligned} \lim _{\underline{\theta }\rightarrow \hbox {int} \left( \mathcal {I} \right) \cap \partial A_+}G_q(\underline{\theta })=-\lim _{\underline{\theta }\rightarrow \hbox {int} \left( \mathcal {I} \right) \cap \partial A_+}\log \det (\chi (\underline{\theta }))=+\infty . \end{aligned}$$
(42)

Finally, from (41) and (42) it follows that \(G_q(\underline{\theta })\) diverges as \(\underline{\theta }\) approach \(\partial \mathcal {I}\cap \partial A_+\).

(2) First, observe that \(D\subset \hbox {int} \left( \mathcal {C} \right) \). Since \(D\) is a compact set, there exists \(s>0\) such that \( \chi (\underline{\theta })^{-1}\ge sI \;\; \forall \; \underline{\theta }\in D\). Define

$$\begin{aligned}&\delta _{jk}:=\frac{1-f_{jk}}{[1-\mathrm{tr}(\chi (\underline{\theta })B_{jk})]^2} + \frac{f_{jk}}{[\mathrm{tr}(\chi (\underline{\theta })B_{jk})]^2}>0\nonumber \\&[M_{jk}]_{r,s}:=\mathrm{tr}(Q_rB_{jk})\mathrm{tr}(Q_sB_{jk}) \end{aligned}$$

where \(M_{jk}\) is a positive semidefinite matrix with rank equal to one. Accordingly, the Hessian of the functional in (24) is

$$\begin{aligned}{}[H_{\underline{\theta }}]_{r,s}&= q \sum _{j,k}\delta _{jk} [M_{jk}]_{r,s}+\nonumber \\&+\,\mathrm{tr}[\chi (\underline{\theta })^{-\frac{1}{2}}Q_r\chi (\underline{\theta })^{-1}Q_s\chi (\underline{\theta })^{-\frac{1}{2}}]\nonumber \\&\ge q\sum _{j,k} \delta _{jk}[M_{jk}]_{r,s} +s\mathrm{tr}[Q_r\chi (\underline{\theta })^{-1}Q_s]\\&\ge q\sum _{j,k}\delta _{jk} [M_{jk}]_{r,s}+s^2\mathrm{tr}[Q_rQ_s]\nonumber \\&\ge q\sum _{j,k} \delta _{jk}[M_{jk}]_{r,s}+s^2\langle Q_r,Q_s\rangle . \end{aligned}$$

Since \(\{Q_l\}_{l=1}^{12}\) are orthonormal matrices and \(\delta _{jk} M_{jk}\ge 0\), we have that

$$\begin{aligned} H_{\underline{\theta }}\ge q\sum _{j,k} \delta _{jk}M_{jk}+s^2I \ge s^2 I. \end{aligned}$$
(43)

Notice that, \(H_{\underline{\theta }}\) is continuous on \(\hbox {int} \left( \mathcal {C} \right) \). Since \(D \subset \hbox {int} \left( \mathcal {C} \right) \), it follows that \(H_{\underline{\theta }}\) is continuous on the compact \(D\). Hence, there exists \(S>0\) such that \(H_{\underline{\theta }} \le SI\,\forall \; \underline{\theta }\in D\). We conclude that \( H_{\underline{\theta }}\) is coercive and bounded on \(D\).

(3) \(H_{\underline{\theta }}\) is continuous on \(D\) and \( \Vert H_{\underline{\theta }} \Vert \le S\,\forall \; \underline{\theta }\in D\), therefore \(H_{\underline{\theta }}\) is Lipschitz continuous on \(D\). \(\square \)

Since all the hypothesis of the Proposition A.1 are satisfied, we have the following proposition.

Proposition 7

The sequence \(\{\underline{\theta }_l\}_{l\ge 0}\) generated by the Newton algorithm of Section 4.3 converges to the unique minimum point \(\hat{\underline{\theta }}^q\in \hbox {int} \left( \mathcal {C} \right) \) of \(G_q\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zorzi, M., Ticozzi, F. & Ferrante, A. Minimal resources identifiability and estimation of quantum channels. Quantum Inf Process 13, 683–707 (2014). https://doi.org/10.1007/s11128-013-0682-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0682-x

Keywords

Navigation