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Abstract—Adiabatic quantum programming defines the time-
dependent mapping of a quantum algorithm into an underlying
hardware or logical fabric. An essential step is embedding
problem-specific information into the quantum logical fabric.
We present algorithms for embedding arbitrary instances ofthe
adiabatic quantum optimization algorithm into a square lattice
of specialized unit cells. These methods extend with fabrigrowth
while scaling linearly in time and quadratically in footpri nt. We
also provide methods for handling hard faults in the logical
fabric without invoking approximations to the original pro blem,
and illustrate their versatility through numerical studies of
embeddabilty versus fault rates in square lattices of comgite
bipartite unit cells. The studies show these algorithms arenore
resilient to faulty fabrics than naive embedding approachs, a
feature which should prove useful in benchmarking the adiaktic
guantum optimization algorithm on existing faulty hardwar e.

Index Terms—quantum computing, adiabatic quantum opti-
mization, graph embedding, fault-tolerant computing

I. INTRODUCTION

Benchmarking adiabatic algorithms is further complicated
when the design of the logical Hamiltonians is constrained.
Because the AQO algorithm uses a reduction of the classical
optimization problem to a quantum logical representation,
i.e., a Hamiltonian, any constraints placed on this undegly
logical fabric can only limit performance. Understandiing t
impact of the logical fabric is especially pertinent since
existing AQO hardware supports a specific topology over a
relatively modest number of qubits [14], [19].

Adiabatic quantum programming has been described pre-
viously as requiring two steps: parameter setting [9] and
minor embedding [10]. Minor embedding, in particular, uses
explicit information about the logical fabric as well as the
problem to generate the implementation of the AQO algorithm
Choi has demonstrated how an arbitrary input graph can be
minor embedded within one type of highly regular fabric, a
square lattice of{4 4’s, complete bipartite graphs with eight
vertices. In the current paper, we also present algorithms
for minor embedding into additional logical fabrics, nagmel

Adiabatic quantum optimization (AQO) applies the princisquare lattices of(. . with ¢ > 1. We present an attempt at

ples of quantum computing to solve unconstrained optimiza-brute force embedding via graph isomorphism in maximal
tion problems. In particular, the AQO algorithm interpekat minors (henceforth called maximal minor embedding) as well
between two quantum logical Hamiltonians in order to adi@&s an algorithm for complete-graph embedding. We compare
batically transform an initial quantum state to a compotal these algorithms in terms of their complexity as well as the
solution state[[16]. This specialized application of adiih Scaling of the embedding result.
guantum computing has been used to solve a variety ofNotwithstanding algorithms for the unit-cell lattice, apem
problems including, for example, instances of satisfigbili question in adiabatic quantum programming is how to handle
(SAT) [15] and exact cover [16], finding Ramsey numberi@brics containing randomized hard faults. Hard faultereé
[18], classifying binary images [21], training classifiiar ~ defects in the logical fabric that compromise its regujars
machine learning[[23] and finding the lowest free-energfeir locations are random, the embedding algorithm must ha
configuration in folded proteing [22]. dle a variety of target graphs. In the current paper, we ptese
Benchmarking the efficiency of the AQO algorithm ignethods for minor embedding that use heuristics to adapt to
currently of significant interest in quantum computer sceen random faults in the logical fabric (hardware). We analyze a
Whereas some studies of optimization problems have unc@®fithmic performance in terms of the maximum embeddable
ered runtimes that scale polynomially in problem size, mthecomplete graph obtained using numerical simulations. &hes
suggest worst-case exponential behavior, or even tragpingstudies quantify the impact of faults on the required logica
local minima [2]. Interpreting these analyses are difficulfootprint and provide performance expectations for hatfa
in part, because of the manner in which instance-speciffjerant adiabatic quantum programming.
information alters the implementation of the algorithne.,i.  The paper is organized as follow: Sec. Il defines the role of
programming. As emphasized by others [2].1[1L].][12], [15p1inor embedding in adiabatic quantum optimization; Sec. Il
choices made in programming the AQO algorithm greatgﬂefly reviews previous work; Sec IV defines nomenclature

impact its runtime and, consequently, the observed scalifgd presents implications of treewidth on graph embedidabil
behavior. Sec. V recounts properties of the unit-cell lattice; Sec. VI

determines treewidth for hardware graghisSec. VII presents
embedding of a complete graph iy Sec. VIII presents two
algorithms for embedding with hard faults and numericatstes
of these algorithms using randomized fault placement;Ifinal
Sec. IX presents our conclusions.
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Il. ADIABATIC QUANTUM OPTIMIZATION Hp+ and a solution to the QUBO problem. In order to meet

The AQO algorithm is based on the reduction of an uncofese conditions]” must scale inversely with the minimum
strained optimization problem to a quantum logical HamifPectral gap offi(¢) [16]. The gap, of course, depends on
tonian that is diagonal in the computational basis [16]. THEB€ Programmed implementation and we may expect that the

reduction most naturally begins in terms of binary varigbl&hoice of embedding plays a role in satisfying this conditio
that can then be mapped to the qubits of a logical Hamiltonian

Hp. For AQO, the problem Hamiltonian takes the form Ill. PREVIOUS RELATED WORK
In [10], Choi described a hardware graph for minor em-
Hp = Z @iZi + Z BijZiZ; @) bedding a large cliquek,, in a limited number of qubits.

Ve G.)EER This layout was called TRIAD. Choi also discussed using

whereq; is the weight on the-th qubit, 3; ; is the coupling the TRIAD scheme on a 128 qubit hardware made up of a
between qubits and j, and the setd» and Er denote the 4 x 4 grid of K44 cells to achieve the embedding &f;7.
vertices and edges of the graptdescribing the logical fabric; We note the figure in [10] corresponding to this description i
a more formal definition of the hardware graph is found ithat paper only embeds/s;¢, but it is possible to embef’; ;7
Sec.[IV. In this setting, the Pault; operator defines the using the TRIAD scheme. It is also worth noting that while
computational basis for theth qubit. the text claimed a requirement of only 6 physical vertices
The 2-local form of Eq. [{1) restricts the optimizatiorfor each logical qubit, this is not achievable with the given
problems that can be mapped directly imt-. Specifically, hardware (and is not realized in the example given). Our work
any binary optimization problem can be recast to have at maesults in the same embedding féf;7 on the4 x 4 grid,
guadratic interactions, i.e., as a quadratic unconstrldieary but then extends the algorithm to work on a large family
optimization (QUBO) problem. This reduction can be donef related logical fabrics. We also provide a straightfamiva
by, e.g., substituting the product of two variables with anealgorithm for extending an embedding from an< » grid to
one and adding a corresponding penalty terin [8]. The AQ& (n+1) x (n+1) grid of K. . cells. This paper additionally
program input is therefore defined as the QUBO problem determines the treewidth of the family of fabric graphs, athi
. T enables better screening of QUBOs for feasible embeddabili
arg mm. X Px, © Perhaps most importantly, prior work did not consider theeca
of faulty fabric, which we address with two algorithms and a

wherex is a vector ofn. binary variables andP is ann-by-n : ;
set of simulations to demonstrate performance.

symmetric real-valued matrix.
In programming the QUBO problem, the interactions be-
tween variables represented Bymust be mapped into the V- GRAPHMINORS AND TREE-DECOMPOSITION
quantum logical fabric. We interprtas a weighted version of A graph G = (V,E) is a set of verticed” and a set of
the adjacency matrix of an input (problem) graBliescribing edgesE formed by unordered pairs of vertices. In this paper,
these dependencies. Hence, programming the AQO algoriththgraphs are finite, simple (no loops or multiple edgesy an
requires embedding in the graphF representing the logical undirected. A grapti/ = (W, F) is asubgraphof ¢, denoted
fabric. We defer the formal definition of minor embeddind? C G, if W CV andF' C E.

to Sec. II.B, but it suffices to say that this yields a graph A path in G = (V,E) is a sequence of vertices
F* = (V*, E*) contained within the logical fabric, over whichvi, ve, . .., v such that forl <i <k, (v;,vi41) € E. A cycle
a HamiltonianH g+ is defined as is a path where); = vy. If there are no repeated vertices, the
. . path (cycle) is ssimple path (cycle)
Hp- = Z a; Zi + Z Bi%iZ; ®3) A graph isconnectedf there is a path from: to v for every
iV (i,5)€E~ pair of distinct vertices:, v in V. A treeis a connected graph

with o and ;; the corresponding weights and couplingsvhich does not contain any simple cycles as subgraphs. We

Setting these parameters requires both the ma&rand the say a graphfl is asubtreeof G if H C G and H is a tree.

embedding into the logical fabric specified By [9]. Programming adiabatic quantum computing hardware to
The program for the AQO algorithm is then expressed k§plve a specific problem requires embeddingr@blem graph
the time-dependent Hamiltonian P = (Vp, Ep) representing the QUBO problem (elements of
Vp correspond to QUBO variables arty = {(4, )| P;; #
H(t;T) = At T)Hr + B(GT)H, (4) 0}) into a hardware graphF = (Vp, Er) whose vertices

where A(t) and B(t) control the time-dependent interpolatiof €Presenting the qubits and edges are determined by cgsplin
between an initial Hamiltoniarff; and the final embedded" the logical fabric. In some cases, this can be done in a one-
problem HamiltoniarH - . The timeT represents the anneal-{0-0N€ manner through subgraph embedding. ,

ing time of the algorithm, such thai (7)) = Hp-. Running Def_|n|t|on 1: A subgraph embeddingf P into F is a

the programH (¢) requires initializing the quantum registerMaPPINgf : Vp — Vi such that:

state to be a ground state df(0). This is followed by  each vertex inVp is mapped to a unique vertex Ir.
annealing to the tim@" after which the register is measured. o if (v,v) € Ep, then(f(u), f(v)) € EF.

Provided the conditions of the adiabatic theorem are met,

the state of the register df will be a ground state of Note that if such ary exists, P is asubgraphof F', P C F.
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However, due to design constraints on the underlying ldgica
fabric, in order to consider a large class of QUBO problems,
P will need to be embedded intd as a minor. ” X

Definition 2: A minor embeddingf P in F' is defined by l/'

/ .
a mappingg : Vp — Vr such that: “

:@u"/
‘;\a

« each vertexv in Vp is mapped to the vertex set of a \ \
connected subtre€, of F. "*‘,,, ®:
o if (u,v) € Ep, then there exisi,,i, € Vr such that ’ 'w‘l‘ m ’
i € Tuy iy € Ty, and (iy,i,) € Ep. "\\ ./'_\\., i
If such a mapping exists, thenP is minor-embeddabl F ,,.m \V/

or P is aminor of F, written P <,,, F'.

Equivalently, P is minor-embeddable irt" if P can be
obtained fromF' by a series of edge deletions and contractions
(see [[18] for more information on graph minors). Note that
every subgraph embedding is also a minor embedding (since
f(v) is a single node subtree &f). Furthermore, the property
of being a minor is transitive& <,,, F' and P <,,, G implies
P <, F.

Closely related to the idea of a graph minor is the concept
of a tree decomposition, a combinatorial way of measuririgp. 1. A 4x4 array of K4 4 unit cells coupled as in the hardware graph
how “tree-like” a graph is. Many early results on graph maor™m 19
were first proved for trees [13]. Additionally, certain pleins
which have exponential complexity on arbitrary graphs have
been shown to have polynomial complexity on graphs ?f
bounded treewidth. More importantly, certain propertids o
tree decompositions, including upper bounds on treewitiid (
definition of which can be found below), are closed under
the taking of minors. Understanding the tree decomposdfon
the hardware graph gives us information about the proserti
of the minors the graph has and, thus, what sort of QUB
problems can be embedded. 1) 7(Kn) =n—1

Definition 3: Given a graph@ = (V, E) let T = (I, D) be 2) 7(Kn,p) = n. L
atree, and’ = {V, },c; be a family of vertex sets (also called 3) The treewidth of am x m 2-D planar grid is given by
bag9 with V; C V indexed by the elements df. The pair min{m, n}.

(T,V) forms atree decompositionf G if the following hold: ~ For more information on tree decomposition and graph

1) V= UitV minors (including the proofs of the above lemmas) see [5],

el

2) if (u,v) € E, then there exists € I such that{u,v} C chapter 12 of[[13], and [17].

Vi.
3) for iy,i0,i3 € I, if i3 Iies on the path ifl" between V. DESCRIPTION OFHARDWARE GRAPH
iy andiy, thenV;, NV, - Equivalently, for any | this section, we review the hardware graph that has been
vertexv € V, {i: v € V} forms a connected subtreethe hasis for several proposed or demonstrated experimenta
of T. studies[[4], [14], [18],[22]. The building blocks of thisawh
are 8-qubit unit cells whose internal couplings fofm 4 [19].

To avoid confusion, the elements &f are referred to as Unit cells are tiled together with each qubit on the left hailf
the verticesof G and the elements of as thenodesof a K44 connected to its image in the cells directly above and
T. The width of a tree decompositiofZ’, V) is given by below, and each qubit on the right half of & 4 connected
max;er{|Vi| — 1}. The treewidth 7(G) of a graphG is the to its image in the cells directly to the left and right. A
minimum width over all tree decompositions 6f Note that representation of the graph formed by sixteen cells is shown
the width of any tree decomposition @ gives an upper in Fig.[d. Note that due to the way the qubits are physically
bound on7(G). The following lemmas are well-known in connected [19], when there is a failure, it will be the fadaf
graph theory and are useful for using treewidth to analyzequbit and not an individual coupler. In terms of the hardwar

.\\

AVA-

Thus, given the treewidth of a logical fabrig, it is possible

0 automatically narrow down the class of QUBO problems for
which it may be possible to find an embedding. The treewidth
of several classic families of graphs is known exactly:

Lemma 2:Let K, be the complete graph onvertices and
n,n the complete bipartite graph d@n vertices.

the quantum hardware graphs described in Béc. V. graph, this means vertices (and all their adjacent edgdk) wi
fail, not individual edges.

Lemma 1:If H is a minor of G (i.e. H is minor- In our analysis, we consider extensions of the unit cell

embeddable irG), thent(H) < 7(G). design to include an increase in the number of qubits forming

a cell. We also parameterize the hardware fabric to allow
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for expanding the grid of unit cells. In general, our results  Proof of Thm[IL: The proof of (1) follows directly from
are applicable in the setting where cells consisRoefqubits Lemmal2. Furthermore, the lower bound of (2) follows from
forming a K. . and are attached to form an x m grid in using the algorithm in SeE_VI[IB to embed,,,,+1 into G,
the same manner as described above. We denote a hardwaree by Lemm&l27 (K., +1) = em, and Lemmall implies
graph of this form asF'(m,c). For example, the hardware

graph shown in Figl1 corresponds K4, 4). em = T(Kems1) < 7(F(m, c)).

For ease of reference, we define a labelingg,, .. First, .
we number a single cell: the vertices on the left half of the The upper bound is slightly harder to compute. The proof

K..asl,2,...,cfrom top to bottom, and the vertices on the\?v ?3$Sts of Conlstr_:fﬁgggjﬂigiﬁ:;ﬂg&%ﬁﬁ%ﬁmm C)ig’vt':]he
right half of the K. asc+ 1,¢+2,...,2¢, again from top em+tc— 1. : (mc)

to bottom. See Fig. 5(a) for an example of this numbering [qinimum width over all tree decompositionsy. + ¢ — 1 is

a Ky 4 cell. Each vertex inVg(,, . is then given a label of an upper bound. . )

the formv? , where(a, b) is the (row, column) position of the To form a tree . decompo.:,ﬂongév) O;C Wc'itlh

cell containing the vertex in thew x m grid - with cell (1,1) Cﬁj €= 12' Weciartcxv;thvl 5 {”17} VL1 VL YLD

in the upper left corner - and corresponds to the position ofV1,2 > - VT2 Vim s Vs -+ Vlims V11, V115 - - ”f_,l}- ]

the vertex inside the individual cell, as described above. That is, Vi contains the right half of every cell in the first

column of the grid plus the left half of thel, 1) cell.
VI. TREEWIDTH OF THEHARDWARE GRAPH The idea is to create all other bags of the decomposition by

As seen in LemmAl1, if the treewidth of the hardware grapqequentially dropping/adding the left/right halves ofiindual

is known, it can be used to a priori rule out the possibility of€llS: Each new bag will be formed by removing one of
embedding certain classes of QUBOS. these sets of four vertices from an existing bag, and adding a

However, in general, determining the treewidth of a_(\different)_se_t of four - specifically one that is not yet cained
arbitrary graphG' is NP-complete[[6],[7]. In[[6], Bodlaender in any ex_lstmg bag. The large qmount Qf overlap betwee_n
describes a linear time algorithm to determine whether tBe bags is to ensure that the third requirement of Def. 3 is
graph has treewidth at most for a given fixedk. However, Satisfied.
the constants for the algorithm are extremely large (andThe bagsVz,...,V;, of the decomposition are formed by
grow exponentially withk), making it impractical for most dropping the right sides of cells in the first column and
graphs, including the hardware graphs of interest here.r Aicking up the left sides, one-by-one. That ig, contains
describes a polynomial-time algorithm which finds a factothe right half of cellsi + 1 throughm in the first column,
O(log(T(G))) approximation of the treewidth of a graﬂﬁ the left half of cells 1 through' -1, and all of cell:.

: . : et 2
[3], however we have tighter bounds for the treewidth of thidore fcl)rmally, for2 < i < m Vi = {of77,.... 075,
hardware grapl¥'(m, c), as presented below. ---,vfn’flw--,v?yf,l, -~~,v},1, ce VT g U},la covfg ke In

the tree being formedl’, the firstm nodes form a path.
Theorem 1:Let F(m,c) be a hardware graph made up of The nextm bags are formed by (again) starting with but
an m x m array of cells, attached as described in $ek. Vadding the right hand sides of the cells in the second column:
where each cell contairs: qubits connected to form &, .. for V;,,41 we drop the remaining four vertices in the left half

Then, of the first column and add the top four in the right half of
1) the treewidth of a single celh{= 1) is c. the second; fol/;,,+; with 2 < i < m, we addvst', ... v,
2) em < 7(F(m,c)) <em+c—1 for m > 2. and remova;fj:il, .., 015 _1. Bag Va1 is then formed by

dropping the last four vertices from the first column and addi
Corollary 1: Any QUBO problem P of treewidth the four left vertices of the top cell in the second columntéNo
7(P) > e¢m + ¢ is not minor embeddable in the hardwaréhatVz,+1 is the exact same “shape” &, only one column
graphF(m, c). over. There is an edge between node 1 and nodel in T,
then nodesn + 2 through2m continue the path.
Corollary 2: Any QUBO problem which contains a At this point, the tree decomposition branches, with two new
Kemicr1 (either as a subgraph or as a minor) cannot Hgs attached tds,,,1 (analogous td’;). The first isVa,, 4o,

embedded into the hardware graplim, c). which starts the branch consisting ©%,,,12, ..., V3, with
Vomi dropping v5tL,, ... 035, and addingv};,...v$,.
Corollary 3: Any QUBO problem which contains aNote this is equivalent to how/,...,V,, were created.
c(m+1) x ¢(m+1) grid (either as a subgraph or as a minorlso attached toV3,,41 is V3,,41, formed by removing the
cannot be embedded into the hardware grajj, c). four righthand vertices from the top cell and adding the
top four vertices from the right half of the third column.
Thus, even though the hardware graph described Tihis branch continues to forWs,, 42, ..., Vi, analogously
Corollary[2 contain®cm? qubits, aK 111, Which would t0 V40, ..., Vo, so thatVy, has the same shape &s,,,

need onlyc(m + 1) + 1 logical qubits (if they were all only one column over.

coupled in the fabric), is shown to not be embeddable, due toThe remainder of the tree decomposition is created starting

its treewidth. from V.1 (formed analogously td%,,.1), until each col-
umn has been covered with a set of bags which are formed
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Fig. 2. The first 12 bags of the tree decomposition & & 3 cell described in the proof of Thril 1. The last 3 bags (not shdwave the same layout as
the bags in (c), moved to the third column of cells.

like Vi,...,V,,. This generates a total &fm? — m bags, 1) every vertex ofF(m,c) is in at least one bag.
each containing exactlym + ¢ vertices of F'(m, ¢). A small 2) every edge is contained in at least one bag. This can be
example of the beginning of this process ol & 3 grid of verified by noticing that every cell is fully contained

K4 4 cells can be seen in Fifil 2. The tree associated with this  in exactly one bag, covering all edges withis, ..

tree decomposition can be found in Hig. 3(b), along with the  Additionally, for each column, there is a bag containing
trees associated with the tree decompositions o2tk and all of the left side vertices of the cells in the column,
the 4 x 4 grids in Fig.[3(d) andl 3(F) respectively. Note that and thus all the vertical intercell edges in the column.
these three trees have the same general shape, with only the Finally, as the bags move from one column to the next,
length of their branches changing, dependenton the right halves of each pair of horizontally adjacent

o ) cells are contained in a unique bag, thus covering all
We now show why(T, V) satisfies the three properties of a horizontal intercell edges.

tree decomposition from Def] 3:



C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 6

° e ° o in all cases, the hidden constants are prohibitively la]e [

[25]. Algorithms which allowH to vary along withF" are no
longer polynomial([l], [[2[7] or are limited to specific classe
of graphs which do not include the hardware graphs described
in Sec[V [20].

A. Maximal Minor Embedding

Given a fabricF’ onn vertices, the method for finding and
embedding every possible minor-embeddable problem graph
P involves solving an NP-complete problem. First, all the
minors of I must be found and, second, we must determine
whetherP is a subgraph of any of them. The first step can be
done when fabric is defined but even once all the minors are
known, every new problem graph must be checked against

them for subgraph containment, which is still NP-complate o
Fig. 3. Trees of the tree decompositions of the hardwarehgreth a grid arbitrary inputs.
of size ()2 x 2, (b) 3 x 3, and (c)4 x 4 which satisfy the upper bound from . - . .
Thm.0. The brute force algorithm for finding all possible minors
of F' involves finding the maximal minors: a set of minors
of F' such that every other minor is a subgraph of one of

3) Letwv be an arbitrary vertex i'(m, c) and letV, be the the maximal minors. The first maximal minor & itself.

lowest index bag in whichy appears. Then, as we walkSubsequent maximal minors are found by contracting an edge
alongT starting at nodé: and traveling in the direction in F to form a minor and checking it for subgraph containment
of increasing node labels, oneeis dropped from the against the list of maximal minors. If it is not a subgraph of
bag (on any branch) it is never picked up again. Thugny of these, it is added to the list. Once every minor of size
the nodes of” which correspond to bags that contain 5 — 1 is found (i.e. every possible edge contractionfohas

form a connected subtree @f. been tested), the process is repeated by contracting edges i
Since(T, V) is a tree decomposition df(m, c) where every these minors. The process is completed at stefien no new
bag contains:m + c vertices, it has widthern + ¢ — 1, so maximal minors of sizex — k are found. An example of a set
of maximal minors can be found in Figl 4, which shows the
T(F(m,c)) <em+ec—1. four distinct maximal minors of'(4, 4).

Conceptually, maximal minor embedding is very straight-
While these bounds are not tight for all choicescpthey forward_. The _mput graptP is compared to thE." known I.'St
of maximal minors forF. However, the comparison requires

are best possible when=1, asecm =cm+c—1=m. ing f b h . hich i binatanial
Determining bounds on the treewidth of the hardware gralé‘?‘ls“ng or subgraph containment, which is a combinatonia

is useful because it allows us to automatically dismiss t Ige number of checks that must be performed. Consequently,
possibility of embedding certain classes of QUBO problems,
members of which we might otherwise have spent considerable
time attempting to embed.

If lower bounds on the treewidth of the QUBO problems
are known, these can be combined with the bounds on the
treewidth of the hardware graph to rule out even more QUBO
problems. There are many graph-theoretic methods for findin
lower bounds on treewidth, which use various graph progerti
including smallest degree, second smallest degree, girtth,
spectral radius. Applying lower bounds to classes of QUBO
problems is beyond the scope of this paper, but an overview
of common lower-bound algorithms can be foundlinh [7].

VIl. EMBEDDING INTO THE HARDWARE GRAPH Q'l \Q
In general, determining whether an arbitrary grahcan " X
2

be minor-embedded into an arbitrary fabfids NP-complete. ()
The best-known general algorithms assume a fixed input L

graph H [1], which is the opposite of the situation in the
guantum programming problem. Additionally, although ther
are polynomial time recognition algorithms for the existen
of an embedding, they do not produce the embedding amd); 4. All minors of a single cell are a subgraph of one of éhésgraphs.

(c) K¢ minus2 edges (d) K5
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1| function V = no_failure_embedding (c,m)

% This function takes an mxm hardware graph
3% of K_{c,c} cells and outputs a (2m)x(cm+1)
% matrix V where the nonrzero entries of V(:,i)
5% are phi(wi) for u_i in the embedded K{cm+1}

7|V = zeros(2xm, cxm+1);
%Almost all the em-2 sets are formed similarly

of for i = 1l:cxm+l
if i <c
1 %First grid row/column, position i in cell
r=1;, s = i;
13 else if i > c+1
%Calculate row/column of the grid
(&) K5 embedded in a (b) K5 labelled by hardware vertices . r = ceil((i=1)/c);
Kaa merged for each logical qubit %Calculate level within cell
17 s = mod((i—1),c);
Fig. 5. A K5 embedding into a singlés 4 cell of qubits. if s==0
19 S=C,
else

. . . . 21 continue ; %these are handled below
maximal minor embedding suffers from two distinct bottle-

necks, i.e., finding the maximal minor and finding the embeg %fill in the horizontal members of phi(u)
ding. Nonetheless, this method has the benefit of finding th for j=1:m _ )
; . . . (215 V(j,i)=2xcxmx(r—1)+2xcx(j —1)+c+s;
optimal embedding with respect to _the size of the embedds %fill in the vertical members of phi(ui)
problem. Because smaller embedding sizes may be expec for j=1:m _
to contribute favorably to the scaling of the energy gap, th| _ V(j+m, i) =2xcx(r —1)+2xcoms(j —1)+s;
effort required must be weighed against its advantages.  |oat i=c and i=c+1, the sets differ, and have size| m

a1if for j=1:m

B. Algorithm to Embeds,, 3 38 :gl_l)i }r*éic;l)*z*c*m’
Instead of trying to find every possible minor of the hard-

ware graph, we can find an embedding#of,,, 1. Then, for o -

any QUBO problem of sizem + 1 or smaller, the embedding nex_t two node§ are each |Cn|t|ally mapped to a SQC;I containing

problem is solved. The downside of this approach is that?smgle vertexip(uc) = {vf;}, andd(uci1) = {vi’s}. See

will fail to embed many problems that are indeed embedda ji9- [ for an example of embeddinigs in a 4 cell of 8

in the hardware. For example, although the graphs in[Fig. 4 jibits. We provide an Instance of Fhls algorithm in a Matlap-

and (c) are embeddable infé, 4 cell, they are not embeddable tyle pseudocode for a function which produces an embedding

in K5, which is the largesfS,, minor in the cell. Because of into non-faulty £'(m, c) hardware.

this, the complete-graph embedding algorithm (as destiibe

Sec[VII-B) requires & x 2 array of four cells in order to find

an embedding for QUBO problems corresponding to either

those graphs.

That is, forl < j < ¢ — 1, ¢(u;) = {v],v{}’}. The

After embedding &, into the first cell of the hardware
graph, them — 1 remaining steps of the algorithm extend the
bedding into the subsequent row and column ofithe m

rid. For each ste@ < ¢ < m, the embedding forms an

Un_Iike maxi_mal minor embedding, the completg-graph errg’xtendabla:lique minor in thei x ¢ grid. We say a minor is
bedding algorithm is computationally simple albeit at thstc extendable if it satisfies two conditions: first foy, 1 < j <
of increasesd usage of the logical fabric. This illustratest oli T oear

£

) i— 1)+ 1 the setp(u,) is non-empty. Second, each set has
the two methods described here represent a tradeoff betw: ast one vertex with an edge into the next row or column.

the computational complexity of the embedding algorithm . . nodesu;, at least one vertex af(u;) is connected
and the potential computational complexity of the qUantugs . ceil in the next row andlor column of the grid. These
program as measured by the area of Fhe C(_)mputational fab{iG tices are added to the setu;). For nodesu, anduc, 1,
Qwen a hardware graph as c_iescrlbed in- Selc. V our %Iﬁe vertex is added t0(u.) and¢(u.+1) at each layei. For
gorithm to embedi.,,1; as a minor in them x m. grid of 5 5ther nodess;, two new vertices are added tgu; ).
K. c_ells is recursive in nature, and constructs the mappln_g The Sets(t,(;—1)+2) throughé(tei—1)ses1) are formed
described in Def.J2. For the sake of clarity, in the des@ipti 1,y nicking one of the unclaimed vertices on the right side of
of the algorithm, the elements of tif€..,..+1 will be referred oy (1 ;) "This is extended by following the edges from cell
to as nodes and the elements of the hardware graph will be.q along rowi. When columni is reached, one edge is
referred to as vertices. Letr, uz, .. ., tem+1 be the nodes of e within the cell, then edges from cell to cell are fokkmiv

the K11 that we are trying to embed. _ up along columni. At the end of this process, each of these
The_ algorithm pegms by er_nbeddmg the first- 1 nodes . will contairei vertices: forl <5< e, GlUpliot)rast) =
(forming a K1) into the cell in the upper left corner of the{vc+s cts s Ry

R . . . 1,4 20V U150

hardware. This is done by pairing left and right vertices1 This process is continued unti,,.. is fully embedded

times. in the m x m grid. See Fig[16 for an extension of &3
embedding in & x 3 grid of K4 4 cells to ak;7 embedding



C. KLYMKO, B. D. SULLIVAN, AND T. S. HUMBLE 8

‘\\'f/:“‘ :“»7?‘»‘«’

\v.‘..
,\\ n/, \-, /'_«\\,-,'/"«\

“ “ i o'\\ " “‘-"
t\\ ,,v .‘W

t\v// \‘\\ vr*‘ ' W \//
.\«w » \‘«QM «QM ’. .\«w » \‘«0» ‘ \«0

/,\\ v/, \- ' /)\\\- 3 \- v/,‘

;\w/ ‘ l\\ W ;\w/ l\\ ‘ l\\ ‘W
/l\\ v/,\\‘ »\\" /l\\ v/,\\‘ »\\"

‘ w‘ \\//‘ & \\\ ‘\\ \\(/‘\\
E}i’,‘r}.m.‘ 3%‘ W' 334(‘ o2 r X4
‘ g ‘ o/é

"I\‘ 'r\‘ /' ';'r\‘

’ XS ‘ t\v..
"Xv‘“ "{v“

\
\

\

/,

\

(a) K13 embedded in uppes x 3 sub-grid (b) K17 embedded in the x 4 grid

Fig. 6. A K3 embedding in & x 3 grid of K4 4 cells extended to & 17 embedding in a x 4 grid. Each color represents a single logical qubit.

in a4 x 4 grid of cells. than the largest possible in &m—1) x (m—1) grid, from each

In the description of the hardware graph in Seé¢. V, theorner, we drop the first row and column and reattempt the
vertices were given labels of the forngb In the Matlab- embedding. This “dropping down” procedure continues until
style pseudocode found below, they are numbered from lddarge enough clique is found ¢m — 1) rows and columns
em?. The numbering starts in the cell in the upper left cornérave been dropped.
as described in Fig 5(a) and this numbering is continuedsacro At the same time, the grid is scanned and the largést
the row, then across subsequent rows. Given a node positeonbeddable in a single cell (< n < ¢ + 1) is found. If
in the formvib, the equivalent number in the code below is complete cell is found, this i&.,;. The reported largest
n = 2cm(a — 1) 4+ 2¢(b — 1) 4+ d. Given a node numbered embeddables,, output by the algorithm is the maximum of
in the code below, the equivalent label is given mb with  the largest clique embeddable inside a single cell and the fo

a=[z20b= [%(a—l)], andd = n mod 2¢, with cliques found from starting at the four corners.

d=2cif n mod 2c=0. Combining these two procedures yields a “flip and drop-
down” method that we compare to the single, nominal attempt
VIIl. EMBEDDING WITH FAILED QUBITS at embedding, i.e., starting in the upper left corner. Ircafles,

The complete-graph embedding algorithm presented in Sg?:e worst performance possible is to embe&g since we

IVIB] assumed that there are no failures in the hardwar@sSume there is at least one working qubit in the hardware.

However, the hardware may exhibit some percentage of failNgte details of the corner selection and drop-down methods

vertices which prevent a fulK.,,.1 embedding (e.g. in the are not shown in the pseudocode.

case of any single qubit failure, the biggest cligue embbkida

is K.). Instead of losing a node from th,,,,,; for each A- Dropping to a smaller cell-graph

failed qubit, techniques can be employed to embed in a wayGiven anm xm hardware graph with cells dt. ., one way

that attempts to minimize the number of seit:) which to deal with failed qubits is to find the largest, ¢, < ¢, such

contain any failed qubits. that there is a complete: x m grid of K., .,'s and use the
We present two algorithms below in order to handle the caakgorithm described in Sectidn VITIB to embed into this sub-

of fabrics with hard faults. These approaches to embeddstg tgrid. This will lead to an embedding of sizgm+1 < em+1.

the different starting points available from the four comef Once thec, has been determined, the embedding can be found

the m x m grid and then return the best possible embeddifty renumbering the vertices of the hardware graph to reflect

that results. Additionally, if the largesk’,, found is smaller the new cell size and running nfailure_embeddingf,, m).
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B. Greedy failure algorithm

As can be seen in Fifl 6, given a perfeck m grid of K .
cells, for each node: of the embedded<.,,,1 (other than
nodesu. andu.4 started in the first cell)p(u) contains2m
vertices. These consist of two setsrafvertices: a connecteds
set consisting of one vertex from the left side of each cell i
the a single column in the grid and a connected set consistil
of one vertex from the right side of each cell in the row
of the same number. Due to the pattern in which cells ar
connected, within both of these sets every vertex occupies t
same position in the cell it comes from.

The greedy failure algorithm works to maximize the size o
the completek,, which can be embedded in the hardwarg
graph with failed vertices, by attempting to pair up sets
containing failed vertices with other sets containing €dil
vertices to create full nodes. These “match-ups” occur & th
diagonal cells of the grid. In the case of no failures, ea¢
horizontal set (of vertices from the right halves of cells) i
matched with a vertical set (of vertices from the left haloés *
cells) whose vertices occupy the same ‘height’ inside alsing
cell. When there are errors, however, horizontal sets aunta
failed vertices attempt to match with vertical sets thabals
contain failed vertices, regardless of the ’heights’ at alhiso
the vertices sit inside a cell. By matching sets which contai
failures, the number of complete nodes (all of which excef
ue andu.y; are made up of two sets) containing failures is
reduced and, consequently, a larger embeddgds achieved.

The Matlab-style pseudocode for a function which producé
the nodes of the embedding described above and outputs:
number of nodes containing no errors can be found at right

40

2

14

42

C. Analysis

A comprehensive set of experiments were run to see hg
well the fallback and greedy algorithms from Selcs. VIII-A
and[VII[-B), respectively, performed under various coratit
of vertex failure. These experiments were run using a sing
attempt at embedding that begins in the upper left corner
the grid of cells as well as a run using the flip and dro°pO
down scheme described at the beginning of §ecl] VIIl. In a
cases, the hardware graph wasran< m grid of K, 4 cells.
The grid sizes tested wera = 4,8,16, and 32. For each of '
these grid sizes, the algorithms were run with a percenthge:
failed vertices op = 2,4, 5,6, 8,10, 15,20 and 25. The failed
vertices were uniformly distributed across the hardwaapir v
In each of the 148 cases (defined by algorithm, scheme, gt
size, and failure rate), 10,000 randomized instances were r
to compute statistical averages. v

A comparison of the results shown by Fids. 7 ddd «4
illustrates that the flip and drop-down embedding schem
performs better than a single attempt at embedding frol
the upper left corner and that the greedy algorithm perform
better than the fallback method. In both schemes, the gree
algorithm embeds d<,, with n approximately 85% of the
optimum value at two percent failure rate.

72

11 %

function [V,k] = greedy_embedding(c,m,G)

% This function takes an mxm hardware graph

% of K_{c,c} cells and a list G of failed
vertices. Outputs are a (2m)x(cm+1) matrix V,
where norzero entries of V(:,i) are phi(ui)
for u_i in the embedded K{cm+1}, and k is the
number of failure-free sets phi(ui).

%
%
%

%Helper Function: PAIR(s,t,cv)
%stores the union of F(:,s) and F(:,t) in V(:,cv)

%First , we form all of the halfsets in a matrix F
F zeros(m, 2k cxm)
for i=1:m
for pos=1:c
%determine columns of F to be filled
Cnum = Zcx*(i —1)+pos
Rnum 2cx(i —1)+pos+c
for j=1:m
%half—sets in col i of hardware graph
F(j,Cnum)=2cxmx(i —1)+2xcx(j —1)+pos+c
%half—sets in row i of hardware graph
F(j,Rnum)=2cxmx(j —1)+2«cx(i —1)+pos
i=1:m

end %of for

% Match half—sets for each row/column to minimize
% number of full sets containing failed vertices.
V=zeros(2xm, cxm+1)

cv = 1; %first open column of V

k=0; %number of failure-free full sets created

for i=1m
Fi= 2cx(i —1) %offset for column indices in F
%Pair up sets containing failures

for s=1:c
if i==1 and cv==c
break; %go create size m sets
if F(:,Fi+s) contains a failure in G
for t=1:c
if F(:,Fi+c+t) contains a failure
PAIR(s,c+t,cv)
CcVv++
break
end %of for s=1:c

%Pair remaining halfsets arbitrarily until
%c—1 (i=1) or c¢ (i>1) whole sets have been ma
for s=1:c
if ((i==1 and cv==c) or (cv==gi+2))
break; %create size m sets or
if F(:,Fi+s) unpaired
for t=1:c
if F(:,Fi+c+t) unpaired
PAIR(s,c+t,cv)
CV++
if V(:,cv) failure—free
k=k+1
end %of for s=1:c

next i

%Create two size m sets in row/column 1:
for s=1:c
if F(:,s) unpaired
V(:,cv) <— F(:,s)
CVv++
if F(:,s) failure—free
k=k+1
if (F:,c+s) unpaired
V(:,cv) <— F(:,c+s)
CV++;
if F(:,c+s) failure—free
k=k+1
end %of for s=1:c
end %of for i=1:m

de
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Fig. 7. Percent of the maximum embeddal{e, achieved for both the fallback and greedy embedding schéomesrious percentages of failed vertices,
averaged over 10,000 trials. This is calculated for bothnglsiattempt at the embedding (left) and multiple attemptthe embedding, starting in all four
corners and, if necessary, dropping to a smaller grid (righoth methods also search for a whole cell.

At fixed failure rate, the percent of the maximum embedrom these experiments. In the case of a single attempt at
dable K,, for both algorithms decreases as the grid size embedding, the distribution of embeddable graphs tendgto b
grows. This is due to the fact that the number of hardwararrower than when using the drop-down scheme. For larger
vertices mapped to a single node of thg minor increases
linearly with grid size. On thel x 4 grid, each set(u) is
made up of 8 vertices (except for 2 special cases). Given ¢ ‘

2% failure rate, this means that ayu) on the4 x 4 grid 5 M-
(with no attempt at a ‘smart’ embedding scheme) has a 16%< 60008 [p=4 1
chance that the set contains at least one failed vertex farsd t g [ Jp=8
can not augment the size of ti€, embedded). Similarly, on  Z Ilp-10
the 32 x 32 grid, eachg(u) contains 64 vertices, and for 2% 5% ]
failure having at least one failed vertex per cell is higlikely. Py
At 2% failure rate, the greedy embedding scheme with fIipsE
and drop-downs achieves embedding of a complete graph ¢ 20" 1
over 40% the size of the maximury,, embeddable. For §
the worst case scenario, and with no attempt at a ‘smart=
embedding, it would only take one failed vertex to destroy o 5 ) 10 12 14 16
each logical qubit. Even at only a 2% failure rate, #2ex 32 Size of K embedded into the hardware
grid has on average 1_63 failed yertices. If the algorithm did (a) Fallback embedding algorithm
not adapt, this high failure density would completely degtr ‘ ‘
the maximum embeddable clique, which igayg. In the case - -
of a 25% failure rate, the number of failed vertices jumps to '€ 6000 |=,_, . ]
2048, yet the greedy failure algorithm is still able to embed 8 [ Jp=s
K on average. ?._ -0
We have also analyzed the variances in embeddability< 4000- 1 ]
=)
. g 5 20000 1
- £ 2
z:is 2‘15 §
é ! § i 0 s A n 'y
8 0 8 05 4 6 8 10 12 14 16
§ § Size of Kn embedded into the hardware

o
o

2 456 8 10 1

15 20 25 2 4
Percentage of failed vertices

56 8 10 15 20 25
Percentage of failed vertices (b) Greedy embedding algorithm
(a) Fallback algorithm (b) Greedy algorithm
Fig. 10. Histograms for 10,000 trials of the fallback (left)d greedy (right)
Fig. 9. Variances of fault-tolerant embedding algorithmdl{ flip and drop- embeddings with flipping and drop-down on thex 4 grid atp = 2,4, 8,

down) on the4 x 4 grid. and 10 percent failure of the nodes.
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Fig. 8. Percent of the maximum embeddabig achieved in both a single attempt at embedding and multiféenats (starting in each of the four corners
and, if necessary, dropping down) for various percentaddailed vertices, averaged over 10,000 trials. This is waled both for the fallback method (left)
and for the greedy method (right).

grid sizes and for higher percentages of failure, the vaganto have greater power for programming implementations of
of the single attempt falls to zero. This is caused by the faatbitrary QUBO instances. Numerical studies of embeddgbil
that the algorithm never does better than embeddinfjsa run against randomized failures further showed the redativ
into a single, complete cell. However, this happens lessnoftrobustness of the second algorithm and the remarkably small
for the drop-down embedding scheme, yielding larger averagariance in embeddable graphs.

K,, with higher variances. An example of this behavior is In our study of embedding for adiabatic quantum pro-
shown in Fig.[® for the case af'(4,4) when varying the gramming, we have neglected any question regarding the
percent failure rate. It is notable that while the varianée subsequent computational complexity. The question of how
the fallback method is relatively large for small error sate a particular embedding algorithm impacts the complexity of
the greedy algorithm maintains a near constant, much lowtbe resulting AQO program is a point for future research.
variance across all failure rates. In Figl 10, the distidout The current work, however, is expected to support uncogerin
of achieved embeddings over 10,000 trials using the flip atite dependency of the computational complexity on both the
drop down scheme o#'(4,4), with the percentage of failed embedding and parameter setting methods used. We believe
vertices atp = 2,4,8, and 10, is shown. The embeddingshat the embedding algorithms explored here, which provide
achieved by the greedy algorithm are both more clustered amdconstructive approach to programming, will be useful for
larger than those achieved by the fallback algorithm. Wi t providing a consistent means of comparing the AQO algorithm
added evidence of panel (b) in Fig$. 7 &hd 8, this demonstraséeross different problem sizes and hardware.

the greedy approach is more robust in the presence of hard
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