Skip to main content
Log in

Differential phase shift quantum private comparison

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A novel quantum private comparison protocol based on a differential phase shift scheme is presented in this paper. In our protocol, two distrustful participants can compare the equality of information with the help of a semi-honest third party. Taking advantages of differential phase shift scheme, this protocol employs weak coherent pulses instead of single photons and can be implemented without expensive and impractical quantum devices, such as entangled photon source and quantum memory. Therefore, it is simpler and more flexible than previous protocols. Moreover, in principle, nearly 100 % qubit efficiency can be achieved because all photon counts obtained by TP contribute to the comparison. The correctness and security of the protocol are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)

  2. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires’ problem. Discrete Appl. Math. 111(1), 23–36 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999). doi:10.1137/S0036144598347011

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett, C., Brassard, G., et al.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175. Bangalore, India (1984)

  5. Inoue, K., Waks, E., Yamamoto, Y.: Differential phase shift quantum key distribution. Phys. Rev. Lett. 89(3), 37902 (2002)

    Article  ADS  Google Scholar 

  6. Noh, T.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103(23), 230501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162–168 (1999). doi:10.1103/PhysRevA.59.162

    Article  ADS  Google Scholar 

  9. Inoue, K., Ohashi, T., Kukita, T., Watanebe, K., Hayashi, S., Honjo, T., Takesue, H.: Differential-phase-shift quantum secret sharing. Opt. Express 16(20), 15469–15476 (2008)

    Article  ADS  Google Scholar 

  10. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002). doi:10.1103/PhysRevA.65.032302

    Article  ADS  Google Scholar 

  11. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004). doi:10.1103/PhysRevA.69.052319

    Article  ADS  Google Scholar 

  13. Wang, J., Zhang, Q., Tang, Cj: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006). doi:10.1016/j.physleta.2006.05.035

    Article  ADS  MATH  Google Scholar 

  14. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries. Phys. Rev. Lett. 100(23), 230502 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. De Martini, F., Giovannetti, V., Lloyd, S., Maccone, L., Nagali, E., Sansoni, L., Sciarrino, F.: Experimental quantum private queries with linear optics. Phys. Rev. A 80(1), 010302 (2009)

    Article  Google Scholar 

  16. Gao, F., Liu, B., Wen, Q.Y., Chen, H.: Flexible quantum private queries based on quantum key distribution (2011). arXiv:1111.1511 (arXiv, preprint)

  17. Hillery, M., Ziman, M., Bužek, V., Bieliková, M.: Towards quantum-based privacy and voting. Phys. Lett. A 349(1), 75–81 (2006)

    Article  ADS  MATH  Google Scholar 

  18. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    Article  ADS  Google Scholar 

  19. Piotrowski, E.W., Sładkowski, J.: Quantum auctions: facts and myths. Phys. A Stat. Mech. Appl. 387(15), 3949–3953 (2008)

    Article  MathSciNet  Google Scholar 

  20. Hogg, T., Harsha, P., Chen, K.Y.: Quantum auctions. Int. J. Quantum Inf. 5(05), 751–780 (2007)

    Article  MATH  Google Scholar 

  21. Patel, N.: Quantum games: states of play. Nature 445(7124), 144–146 (2007)

    Article  ADS  Google Scholar 

  22. Jia, H.Y., Wen, Q.Y., Song, T.T., Gao, F.: Quantum protocol for millionaire problem. Opt. Commun. 284(1), 545–549 (2011)

    Article  ADS  Google Scholar 

  23. Zhang, W.W., Zhang, K.J.: Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party. Quantum Inf. Process. 12(5), 1981–1990 (2013). doi:10.1007/s11128-012-0507-3

    Article  MathSciNet  ADS  Google Scholar 

  24. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42(5), 055,305 (2009). http://stacks.iop.org/1751-8121/42/i=5/a=055305

    Google Scholar 

  25. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Secure quantum private comparison. Phys. Scr. 80(6), 065002 (2009). http://stacks.iop.org/1402-4896/80/i=6/a=065002

    Google Scholar 

  26. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010) doi:10.1016/j.optcom.2009.11.085, http://www.sciencedirect.com/science/article/pii/S0030401809012668

  27. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with w state. Opt. Commun. 284(12), 3160–3163 (2011). doi:10.1016/j.optcom.2011.02.017

    Article  ADS  Google Scholar 

  28. Liu, W., Wang, Y.B.: Quantum private comparison based on ghz entangled states. Int. J. Theor. Phys. 51(11), 3596–3604 (2012). doi:10.1007/s10773-012-1246-z

    Article  MATH  MathSciNet  Google Scholar 

  29. Wen, L., Yong-Bin, W., Wei, C.: Quantum private comparison protocol based on bell entangled states. Commun. Theor. Phys. 57(4), 583–588 (2012). doi:10.1088/0253-6102/57/4/11

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Jia, H.Y., Wen, Q.Y., Li, Y.B., Gao, F.: Quantum private comparison using genuine four-particle entangled states. Int. J. Theor. Phys. 51(4), 1187–1194 (2012). doi:10.1007/s10773-011-0994-5

    Article  MathSciNet  MATH  Google Scholar 

  31. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using epr pairs. Quantum Inf. Process. 11(2), 373–384 (2012). doi:10.1007/s11128-011-0251-0

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with chi-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012). doi:10.1007/s10773-011-0878-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10(6) (2012). doi:10.1142/S0219749912500657

  34. Xu, G.A., Chen, X.B., Wei, Z.H., Li, M.J., Yang, Y.X.: An efficient protocol for the quantum private comparison of equality with a four-qubit cluster state. Int. J. Quantum Inf. 10(4) (2012). doi:10.1142/S0219749912500451

  35. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z., Cui, W.: New quantum private comparison protocol using x-type state. Int. J. Theor. Phys. 51(6), 1953–1960 (2012). doi:10.1007/s10773-011-1073-7

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, J., Jin, H., Jing, B.: Improved eavesdropping detection strategy based on four-particle cluster state in quantum direct communication protocol. Chin. Sci. Bull. 57(34), 4434–4441 (2012)

    Article  MATH  Google Scholar 

  37. Liu, B., Gao, F., Jia, H., Huang, W., Zhang, W., Wen, Q.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013). doi:10.1007/s11128-012-0439-y

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Chang, Y.J., Tsai, C.W., Hwang, T.: Multi-user private comparison protocol using GHZ class states. Quantum Inf. Process. 12(2), 1077–1088 (2013). doi:10.1007/s11128-012-0454-z

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. Sun, Z., Long, D.: Quantum private comparison protocol based on cluster states. Int. J. Theor. Phys. 52(1), 212–218 (2013). doi:10.1007/s10773-012-1321-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional bell states. Quantum Inf. Process. 12(1), 559–568 (2013). doi:10.1007/s11128-012-0395-6

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Lo, H.K.: Insecurity of quantum secure computations. Phys. Rev. A 56(2), 1154 (1997)

    Article  ADS  Google Scholar 

  42. Li, Y.B., Wen, Q.Y., Gao, F., Jia, H.Y., Sun, Y.: Information leak in Liu et al.’s quantum private comparison and a new protocol. Eur. Phys. J. D 66(4) (2012). doi:10.1140/epjd/e2012-30065-9

  43. Yang, Y.G., Xia, J., Jia, X., Zhang, H.: Comment on quantum private comparison protocols with a semi-honest third party. Quantum Inf. Process. 12(2), 877–885 (2013). doi:10.1007/s11128-012-0433-4

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Liu, X.T., Zhao, J.J., Wang, J., Tang, C.J.: Cryptanalysis of the secure quantum private comparison protocol. Phys. Scr. 87(6), 065004 (2013). http://stacks.iop.org/1402-4896/87/i=6/a=065004

    Google Scholar 

  45. Waks, E., Takesue, H., Yamamoto, Y.: Security of differential-phase-shift quantum key distribution against individual attacks. Phys. Rev. A 73(1), 012344 (2006)

    Article  ADS  Google Scholar 

  46. Curty, M., Tamaki, K., Moroder, T.: Effect of detector dead times on the security evaluation of differential-phase-shift quantum key distribution against sequential attacks. Phys. Rev. A 77(5, Part a) (2008). doi:10.1103/PhysRevA.77.052321

  47. Chen-Xu, F., Rong-Zhen, J., Wen-Han, Z.: Performance of differential-phase-shift keying protocol applying 1310 nm up-conversion single-photon detector. Chin. Phys. Lett. 25(9), 3135–3137 (2008)

    Article  ADS  Google Scholar 

  48. Zhao, Y.B., Fung, C.H.F., Han, Z.F., Guo, G.C.: Security proof of differential phase shift quantum key distribution in the noiseless case. Phys. Rev. A 78, 042330 (2008). doi:10.1103/PhysRevA.78.042330

    Article  ADS  Google Scholar 

  49. Gomez-Sousa, H., Curty, M.: Upper bounds on the performance of differential-phase-shift quantum key distribution. Quantum Inf. Comput. 9(1–2), 62–80 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Rong-Zhen, J., Chen-Xu, F., Hai-Qiang, M.: Analysis of the differential-phase-shift-keying protocol in the quantum-key-distribution system. Chin. Phys. B 18(3), 915–917 (2009)

    Article  ADS  Google Scholar 

  51. Ma, L., Nam, S., Xu, H., Baek, B., Chang, T., Slattery, O., Mink, A., Tang, X.: 1310 nm differential-phase-shift qkd system using superconducting single-photon detectors. New J. Phys. 11 (2009). doi:10.1088/1367-2630/11/4/045020

  52. Zhang, H., Wang, J., Liu, X., Wei, Z., Liu, S.: A fiber-based differential phase shift quantum key distribution scheme with higher key creation efficiency. Opt. Commun. 282(14), 3037–3039 (2009). doi:10.1016/j.optcom.2009.03.066

    Article  ADS  Google Scholar 

  53. Jindong, W., Xiaojuan, Q., Huani, Z., Zhengjun, W., Changjun, L., Songhao, L.: A free-space-based differential phase shift quantum key distribution scheme with higher key creation efficiency. Opt. Commun. 282(16), 3379–3381 (2009). doi:10.1016/j.optcom.2009.05.020

    Article  Google Scholar 

  54. Wen, K., Tamaki, K., Yamamoto, Y.: Unconditional security of single-photon differential phase shift quantum key distribution. Phys. Rev. Lett. 103(17) (2009). doi:10.1103/PhysRevLett.103.170503

  55. Kawahara, H., Inoue, K.: Differential-phase-shift quantum key distribution with segmented pulse trains. Phys. Rev. A 83(6) (2011). doi:10.1103/PhysRevA.83.062318

  56. Kawahara, H., Oka, T., Inoue, K.: Differential-phase-shift quantum key distribution with phase modulation to combat sequential attacks. Phys. Rev. A 84(5) (2011). doi:10.1103/PhysRevA.84.052311

  57. Namekata, N., Takesue, H., Honjo, T., Tokura, Y., Inoue, S.: High-rate quantum key distribution over 100 km using ultra-low-noise, 2-ghz sinusoidally gated ingaas/inp avalanche photodiodes. Opt. Express 19(11), 10632–10639 (2011)

    Article  ADS  Google Scholar 

  58. Xiao-Lin, Y., Jin-Dong, W., Zheng-Jun, W., Bang-Hong, G., Song-Hao, L.: A new multi-wavelength two-way quantum key distribution system with a single optical source. Acta Phys. Sin. 61(18) (2012). doi:10.7498/aps.61.184215

  59. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61(5), 052304 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by the National Natural Science Foundation of China (Project No. 61101073) and the Graduate Innovation Funds for the National University of Defense Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-tong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Xt., Zhang, B., Wang, J. et al. Differential phase shift quantum private comparison. Quantum Inf Process 13, 71–84 (2014). https://doi.org/10.1007/s11128-013-0708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0708-4

Keywords

Navigation