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In this paper we study the protocol implementation and property analysis for several practical
quantum secret sharing (QSS) schemes with continuous variable graph state (CVGS). For each QSS
scheme, an implementation protocol is designed according to its secret and communication channel
types. The estimation error is derived explicitly, which facilitates the unbiased estimation and error
variance minimization. It turns out that only under infinite squeezing can the secret be perfectly
reconstructed. Furthermore, we derive the condition for QSS threshold protocol on a weighted
CVGS. Under certain conditions, the perfect reconstruction of the secret for two non-cooperative
groups is exclusive, i.e. if one group gets the secret perfectly, the other group cannot get any
information about the secret.

PACS numbers: 03.67.Dd, 03.67.Ac, 03.67.Hk

I. INTRODUCTION

Quantum cryptography provides a sophisticated ap-
proach to achieve the communication security by taking
advantage of quantum mechanics principles [1]. Among
various schemes, quantum secret sharing (QSS) is a gen-
eral multi-partite information security scheme that at-
tracts extensive research interests [2–9]. It allows one
dealer to distribute a secret among a number of players
in such a way that a certain set of players can recon-
struct the secret by taking operations collaboratively and
exchanging information. In contrast to quantum key dis-
tribution [10] that guarantees the secure communication
between only two parties, QSS enables multiple parties
to communicate securely at the same time.

QSS has its origin in classical information theory. An
early scheme was given in [2] to share either classical
or quantum secret to three or four players by using the
GHZ states. Ref. [3] studied general threshold schemes
to share quantum secrets and showed that the quantum
no-cloning theorem is the only constraint on the exis-
tence of threshold schemes. Ref. [4] further extended
the results to general access structures, including non-
threshold schemes. These researches have established
theoretical foundations for many ensuing investigations,
e.g. hybrid schemes [5] and twin-threshold schemes [6].

On the other hand, graph state has been extensively
studied in applications such as quantum error correc-
tion [11–14], entanglement purification [15–17], entangle-
ment measurement [18–20], and Bell inequality [21, 22].
In recent years, the implementation of QSS with graph
state was introduced in [7, 23] to treat three kinds of
threshold QSS schemes in a unified graph state approach

∗Corresponding author. Email: gqhe@sjtu.edu.cn
†Corresponding author. Email: zhangjun12@sjtu.edu.cn

and to propose embedded protocols in large graph states.
Ref. [8] generalized the results to prime dimensions, and
Ref. [9] investigated non-threshold schemes. However, all
these results are based on discrete variable graph states.

Here we are interested in QSS with continuous variable
graph state (CVGS). CVGS was first introduced in [24] as
the continuous analogue of discrete variable graph state.
It has the nice property that any local Gaussian operation
on a CVGS can be associated with a geometric transfor-
mation on its graph representation [25]. Refs. [26, 27]
showed that CVGS can be used to generate universal
quantum operations and thus is potentially a useful phys-
ical resource to implement quantum computations. In
addition, CVGS also finds applications in quantum com-
munications, e.g. Ref. [28] proposed a protocol to realize
quantum teleportation between two parties.

This paper is focused on the implementation and prop-
erty analysis of QSS schemes with CVGS. We differenti-
ate eight QSS schemes according to the secret and com-
munication channel types. Among all these schemes, four
of them have no practical values because they are either
physically infeasible or insecure. We will thus investi-
gate in the other four schemes. These extend the works
in [7, 8] into the CVGS domain.

We study two essential problems for these QSS schemes
with CVGS First, for each QSS scheme, we design an im-
plementation protocol for the dealer and players so that
the players may collaborate to estimate the secret. The
mean and variance of the estimation error are derived
explicitly. Based on the error statistics, we can derive
the parameter settings for unbiased estimation. Further-
more, the protocol parameters can be tuned to minimize
the error variance. In the case of infinite squeezing, it can
be shown that finding the condition that a set of players
can perfectly estimate the secret can be transformed to
solve a set of linear equations.

The second problem is the threshold protocol, which is
crucial for many applications that need decision-making.

http://arxiv.org/abs/1304.4477v1
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FIG. 1: QSS (k, n) threshold protocol.

In QSS, a (k, n) threshold protocol refers to the case
when k players or more can estimate the secret perfectly,
and any set with less players can never get the secret
within a finite error bound. We show that an arbitrary
(k, n) threshold protocol with n/2 < k ≤ n can be imple-
mented for three schemes using a weighted CVGS pre-
pared with infinitely squeezed qumodes. An interesting
observation is that for the scheme with quantum secret,
private distribution channel, and quantum player-player
channel (referred as QPrtQ), the threshold protocol for
two non-cooperative player groups is exclusive, mean-
ing that if one group can perfectly estimate the secret
qumode, the other cannot estimate either quadrature of
the secret qumode within a finite error bound. The secu-
rity of the quantum secret is thus gurantteed. For QPrtQ
and another scheme, these protocols cover all the phys-
ically feasible cases, and we also reveal the duality be-
tween them.
This paper is organized as follows. Sec. II provides

a brief introduction on QSS schemes and CVGS. Three
QSS schemes with CVGS are investigated in Sec. III, IV
and V, respectively. We conclude the paper in Sec. VI.

II. BACKGROUND

In this section we give a brief introduction of QSS
schemes and CVGS.
In a QSS protocol, there are one dealer and n play-

ers as shown in Fig. 1. The dealer has a secret that is
represented by either classical or quantum information.
At first, the dealer encodes the secret into a prepared
quantum state, and subsequently distributes it to all the
players through either private or public channels. With
this quantum state at hand, a group of players can either
apply local operations to their own states and then ex-
change classical information, or take joint operations to

their states. The task for these players is to reconstruct
the secret based on the information circulated around.
We can classify QSS into eight schemes according to

their secret type (classical or quantum), dealer-player dis-
tribution channel (private or public), and player-player
communication channel (classical or quantum). Among
all these eight schemes, QPubC and QPrtC are phys-
ically infeasible because it is impossible to recover un-
known quantum information from classical information.
Moreover, QPubQ and CPubQ are insecure because an
eavesdropper can disguise identity to modify the infor-
mation on public channel. Therefore, we will investigate
only the four schemes in Table I.

Secret type
Dealer-Player

Channel

Player-Player

Channel

CPvtC Classical Private Classical

QPvtQ Quantum Private Quantum

CPubC Classical Public Classical

CPvtQ Classical Private Quantum

TABLE I: Feasible QSS schemes.

In particular, we are interested in a (k, n) threshold
protocol, which refers to the case when it requires at
least k players to estimate the secret perfectly, and any
set with less than k players cannot estimate the secret
within a finite error bound. This procedure is illustrated
in Fig. 1.
In this paper we will use CVGS to implement QSS

schemes. A CVGS is an entangled multi-qumode state
that can be represented by an undirected graph. De-
note the adjacency matrix of this graph as G, whose ele-
ment Gij represents the interaction gain of the coupling
between qumode i and j. If Gij takes only binary val-
ues 0 or 1, it is an unweighted CVGS; otherwise, it is a
weighted CVGS.
In a QSS scheme, the dealer needs to prepare a CVGS

and then to encode the secret into that CVGS. At the
beginning, the dealer has n vacuum states each with the

position X
(0)
i and momentum P

(0)
i , where both X

(0)
i and

P
(0)
i are random variables with standard Gaussian dis-

tribution. The dealer then squeezes the momentum and
at the same time amplifies the position of each qumode,
obtaining squeezed vacuum states:

Pj = e−rjP
(0)
j , Xj = erjX

(0)
j . (1)

Here rj is the squeezing parameter for qumode j. Juxta-
pose Xj ’s and Pj ’s in a vector form:

v(n) =
[

X1 · · · Xn P1 · · · Pn

]T

, (2)

where the subscript (n) indicates the number of the
qumodes. Now apply a quantum nondemolition (QND)
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coupling with interaction gain Gij to the pair (i, j) [24].
This establishes a connection between qumode i and j
in the graph, and the resulting quadratures are (Xi, Pi+
GijXj) and (Xj , Pj +GjiXi), respectively. After a series
of such QND coupling operations, the final quadratures
can be written as

XG
j = Xj , PG

j = Pj +
n
∑

l=1

GjlXl. (3)

Letting

vG(n) =
[

XG
1 · · · XG

n PG
1 · · · PG

n ,
]T

.

we can rewrite Eq. (3) in a compact form as

vG(n) =

[

I 0

G(n) I

]

v(n). (4)

In the next three sections, we will investigate the imple-
mentations of the CPvtC, QPvtQ, and CPubC schemes
in Table I. We point out that the CPvtQ scheme can be
implemented by super-dense coding [35] and is indeed a
quantum data hiding scheme [36, 37]. Since CPvtQ can
be dealt with similarly to the others, we will focus on the
first three. For simplicity, we set ~ = 1 throughout this
paper.

III. CASE 1: CPvtC SCHEME

In this section we study the CPvtC scheme, in which
the dealer encodes a classical secret into a CVGS, then
distributes the qumodes to the players through private

channels, and finally the players exchange information
via classical channels so as to reconstruct the secret. We
will derive the estimation error and then obtain its mean
and variance. This facilitates the unbiased estimation
and also the optimal tuning of protocol parameters to
minimize the error variance. We will also study the con-
dition to perfectly reconstruct the secret, and discuss the
implementation of a general threshold scheme on CVGS.
We now present the implementation details of CPvtC

scheme. Assume that the classical secret the dealer holds
is a real number γ. The dealer starts from encoding the
secret into a CVGS by applying a momentum displace-
ment operation Z(cjγ) = eicjγx̂ [27] to qumode j with
quadratures (XG

j , PG
j ), where cj , γ are real numbers and

x̂ is the position operator. The momentum of qumode j

is shifted to PG
j + cjγ. Let c = [ c1 · · · cn]

T
. Then the

shifted momenta for all the qumodes can be written as a
vector cγ. The dealer distributes qumode j to player j
and publishes the vector c to all the players. Now player
j has the quadratures (XG

j , PG
j + cjγ) under disposal.

To recover the secret, player j can take the following
actions:

1. Let

PD
j = PG

j + cjγ. (5)

Apply the operator exp
{

−i
βj

2αj
(P̂D

j )2
}

to the

quadratures (Xj , P
D
j ) so that the new quadratures

are
(

Xj +
βj

αj
PD
j , PD

j

)

.

2. Measure the position to get M
(

Xj +
βj

αj
PD
j

)

,

where M( · ) is a measurement operation that re-
sults in a random variable.

3. Scale the measurement result by αj and obtain

µj = αjM
(

Xj +
βj

αj

PD
j

)

= M(αjXj + βjP
D
j ),

(6)

where the last equality is because M( · ) is a linear
operation.

The players can then exchange their µj by classical
communications. We now show that each player can use
the sum of µj as an estimation of the secret γ. From
Eqs. (2)-(6), the estimation error e can be calculated as

e =

n
∑

j=1

µj − γ

=M
(

[

aT | bT
]

([

I 0

G(n) I

]

v(n) +

[

0

c

]

γ

))

− γ

=M
([

aT + bTG(n) | bT
]

v(n)
)

+ (bT c− 1)γ, (7)

where a = [α1 · · · αn]
T , b = [β1 · · · βn]

T , 0 =
[ 0 · · · 0 ]T , and G(n) is the adjacency matrix of the n-
qumode graph state.
The mean of the estimation error is

E e = EM
([

aT + bTG(n) | bT
]

v(n)
)

+ (bT c− 1)γ.

Since EM(Xj) = EM(Pj) = 0, we have
EM

([

aT + bTG(n) | bT
]

v(n)
)

= 0. Hence,

E e = (bT c− 1)γ.

To ensure an unbiased estimation, it is only required that

bT c = 1. (8)

The variance of the estimation error can be obtained after
some algebraic derivations as

Var(e) = ‖(aT + bTG(n))R(n)‖2 + ‖bTR−1
(n)‖

2, (9)

whereR(n) = diag{er1, · · · , ern}, and ‖·‖ is the Euclidean
norm.
To enhance the estimation precision, it is desired to

reduce the error variance (9). Combining with Eq. (8),
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it is a nonlinear constrained minimization problem with
optimization variables a, b, G(n), and R(n). We can thus
tune these protocol parameters to achieve a better es-
timation. For example, when a, b, G(n) are fixed, the
optimal squeezing parameters that minimize the error
variance can be chosen as

rj =
1

2
log

∣

∣

∣

∣

bj
(aT + bTG(n))j

∣

∣

∣

∣

, (10)

for bj 6= 0 and (aT + bTG(n))j 6= 0.
It is also easy to observe that under constraint (8), the

variance (9) can achieve 0 only if some parameters take
extremal values. One choice is to apply infinite squeezing,
i.e. letting the squeezing parameters rj → ∞ and then

aT + bTG(n) = 0T . (11)

Combining Eqs. (8) and (11), we get a condition that
guarantees n players to get the secret perfectly under
infinite squeezing

[

aT | bT
]

[

I 0

G(n) c

]

=
[

0T | 1
]

. (12)

Now let us discuss (k, n) QSS threshold protocols,
which means that it requires at least k (k ≤ n) play-
ers to estimate the secret perfectly, and any set with less
than k players cannot estimate the secret within a finite
error bound. Consider a set of k collaborative players
with indices j1, · · · , jk. To simplify the notation, we
use AJ,K to denote a matrix formed by taking rows with
indices in J and columns in K from a matrix A, where
J,K are subsets of N = {1, · · · , n}. For the case of a vec-
tor, we can similarly define vJ . Removing the rows and
columns corresponding to the remaining n − k players
from Eq. (12), we obtain

[

aTJ bTJ

]

[

IJ,N 0

GJ,N cJ

]

=
[

0 · · · 0 1
]

, (13)

where J = {j1, · · · , jk}. Eq. (13) is a sufficient and nec-
essary condition for k players from a set of n players to
recover the secret perfectly under infinite squeezing.
We give a lower bound on k that ensures the physical

existence of a (k, n) CPvtC threshold protocol.

Theorem 1 A (k, n) threshold protocol of CPvtC
scheme satisfying n/2 < k ≤ n can be implemented on a
weighted CVGS with infinite squeezing.

To keep the flow of the paper, the proof is given in Ap-
pendix A.

IV. CASE 2: QPvtQ SCHEME

In this section we discuss the QPvtQ scheme, in which
the dealer has a quantum secret, the qumodes encoding

the secret are distributed through private channels, and
the players share their information by quantum commu-
nication channels. We will first give the implementation
protocol design, and then calculate the estimation error.
We then discuss the condition of perfectly estimating the
secret qumode as well as the threshold protocols under
infinite squeezing.
First consider the protocol design. In a QPvtQ scheme,

the dealer has a secret qumode (XS , PS). At the be-
ginning, the dealer prepares an (n + 1)-mode CVGS,
and keeps the (n + 1)-th qumode with quadratures
(XG

n+1, P
G
n+1) for later use. The dealer distributes the

other n qumodes to the n players. Now the dealer per-
forms a Bell measurement as follows. First, combine
the (n + 1)-th qumode with (XS , PS) to yield two new
qumodes (Xu, Pu) and (Xv, Pv), where

Xu =
XG

n+1 +XS√
2

, Pu =
PG
n+1 + PS√

2

Xv =
XG

n+1 −XS√
2

, Pv =
PG
n+1 − PS√

2
. (14)

Second, take homodyne measurements for Xu and Pv.
The measurement results M(Xu) and M(Pv) are two
Gaussian random variables.
The dealer publishes these two measurement results

to all the players. If any set of players can construct
the qumode (−XG

n+1, P
G
n+1), they can perfectly estimate

the secret by simply adding the position displacement√
2M(Xu) and subtracting the momentum displacement√
2M(Pv) [29]. This is the idea of continuous variable

quantum teleportation [30].
To construct (−XG

n+1, P
G
n+1), the players can take the

following steps:

1. Apply a single-mode Gaussian unitary opera-
tion and a phase insensitive amplification [31]
to transform a qumode (XG

j , PG
j ) to (αjX

G
j +

βjP
G
j , α′

jX
G
j + β′

jP
G
j ), where αj , βj , α

′
j , β

′
j are all

real numbers;

2. Pick one qumode from the players’ qumodes and
transform it to (

∑n

i=1 αjX
G
j +βjP

G
j ,
∑n

i=1 α
′
jX

G
j +

β′
jP

G
j ) by using nonlocal operations such as a

controlled-X operation [32].

From Eq. (4), the position error can be calculated as

ex =

n
∑

i=1

(αjX
G
j + βjP

G
j )− (−XG

n+1)

=
[

aT 0 bT 0
]

[

I 0

G(n+1) I

]

v(n+1)

+ [0T
(n) 1 0T

(n+1)]v(n+1)

=
[

[aT 1] + [bT 0]G(n+1) [bT 0]
]

v(n+1), (15)

where a = [α1, · · · , αn]
T , b = [β1, · · · , βn]

T , v(n+1) =

[X1, · · · , Xn+1, P1, · · · , Pn+1]
T , andG(n+1) is an (n+1)×
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(n+1) adjacency matrix. Similarly, the momentum error
is

ep =

n
∑

i=1

(α′
jX

G
j + β′

jP
G
j )− PG

n+1

=
[

a′T 0 b′T 0
]

[

I 0

G(n+1) I

]

v(n+1)

− [gTn+1 0T
(n) 1]v(n+1)

=
[

[a′T 0] + [b′T 0]G(n+1) − gTn+1 [b′T −1]
]

v(n+1),

(16)

where a′ = [α′
1, · · · , α′

n]
T , b′ = [β′

1, · · · , β′
n]

T , and gTn+1

is the (n+ 1)-th row of the matrix G(n+1).
By applying local unitary operations, the covariance

matrix of the secret qumode can be diagonalized to

(

Var(XS) 0

0 Var(PS)

)

From Eq. (1) in [33], we can get the fidelity of the esti-
mated secret qumode as

F =
2√

δ + ǫ−√
ǫ
, (17)

where

δ =(2Var(XS) + V1)(2Var(PS) + V2),

ǫ =(Var(XS)Var(PS)− 1)×
[(Var(XS) + V1)(Var(PS) + V2)− 1],

V1 =
∥

∥

[

[aT 1] + [bT 0]G(n+1)

]

R(n+1)

∥

∥

2

+
∥

∥

∥
[bT 0]R−1

(n+1)

∥

∥

∥

2

,

V2 =
∥

∥

[

[a′T 0] + [b′T 0]G(n+1) − gTn+1

]

R(n+1)

∥

∥

2

+
∥

∥

∥
[b′T −1]R−1

(n+1)

∥

∥

∥

2

,

R(n+1) =diag{er1 , · · · , ern+1}.

In particular, for minimum uncertainty states, we have
that Var(XS)Var(PS) = 1. Hence ǫ = 0, and Eq. (17)
can be simplified to

F =
2√
δ
. (18)

With the fidelity in Eq. (17), it is possible to opti-
mize the protocol parameters to maximize the fidelity.
To achieve perfect fidelity at 100%, it is required that
V1 = V2 = 0. This amounts to the following conditions
under infinite squeezing:

[

[aT 1] + [bT 0]G(n+1)

]

= 0T , (19)
[

[a′T 0] + [b′T 0]G(n+1) − gTn+1

]

= 0T . (20)

Eqs. (19) and (20) can be rewritten as

[

aT | bT
]

[

I ′

G′
(n+1)

]

=
[

0T | −1
]

, (21)

[

a′T | b′T
]

[

I ′

G′
(n+1)

]

= gTn+1, (22)

where I ′, G′
(n+1) are n × (n + 1) matrices obtained by

deleting the (n+1)-th row of the matrices I and G(n+1),
respectively.
Next we study the threshold protocol for QPvtQ

scheme. The following theorem can be obtained.

Theorem 2 Any (k, n) threshold protocol of QPvtQ
scheme can be implemented with a weighted CVGS of
infinite squeezing.

The proof is given in Appendix B.
Furthermore, different from CPvtC, if these k players

can perfectly recover the secret, we can show that the
remaining n−k players cannot get any information about
the secret.

Theorem 3 For two non-cooperative group with QPvtQ
scheme, if one group can perfectly estimate the secret
qumode, the other group cannot estimate either quadra-
ture of the quantum secret within a finite error bound.
Thus they cannot obtain any information about the se-
cret.

The proof is provided in Appendix C.
For a (k, 2k − 1) threshold protocol, since any group

with k or more players can perfectly estimate the secret,
from Theorem 3, we know that any group with less than
k players can obtain no information about the quantum
secret. This holds true for any (k, n) threshold protocol,
which is obtained from (k, 2k − 1) protocol by picking n
qumodes from 2k − 1 qumodes. For these protocols, we
have the following corollary.

Corollary 1 Any player group with number less than
the threshold k cannot obtain any information about the
quantum secret.

V. CASE 3: CPubC SCHEME

This section is focused on the CPubC scheme, where
the dealer has a classical secret, the qumodes encoding
this secret is distributed through public channels, and the
players collaborate to get the secret by classical commu-
nication channels. We will propose an implementation
protocol, and then calculate the estimation error. The
threshold protocol is studied by revealing the duality be-
tween QPvtQ and CPubC and schemes.
We start from proposing the implementation protocol.

First, the dealer prepares an (n+ 1)-mode CVGS, keeps
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the (n+ 1)-th qumode, and then distributes the other n
qumodes to the n players. Since the qumodes are dis-
tributed through public channels, there exists risk that
some eavesdroppers may get them. To ensure secure clas-
sical communications, from the method of CV quantum
key distribution [10], the dealer takes a random homo-
dyne measurement at the (n+1)-th qumode and obtains
either M(XG

n+1) or M(PG
n+1). Here the dealer measures

either the position or the momentum, but which quadra-
ture has been measured is unknown to the others. The
measurement outcome is then used as a random key that
the dealer will share with the players.
Secondly, the players achieves a consensus via classical

communications that they will randomly estimate either
M(XG

n+1) or M(PG
n+1) in a collaborative manner. Then,

they take the three steps of Eqs. (5)-(6) as in Sec. III,
and exchange their results so as to use

∑n

j=1 M(αjXj +

βjP
G
j ) as an estimation of the secret.

Thirdly, both the dealer and the players need to make
sure that the quadrature they estimated is exactly the
same as the one that the dealer measured earlier. The
dealer and the players will do the following:

1. The players announce the quadrature that they es-
timated;

2. The dealer publishes the quadrature actually mea-
sured;

3. If the quadrature estimated by the players matches
the one measured by the dealer, they keep the esti-
mation result

∑n
j=1 M(αjXj+βjP

G
j ) as the shared

key; if not, they discard it and try again.

Step 3 is necessary because if the estimation quadra-
ture matches the measurement quadrature, the players
obtain an unbiased estimation of the measurement out-
come. Otherwise, the players get something completely
useless. The error in this case will be unbounded, as
a homodyne measurement for the position (or momen-
tum) will collapse the momentum (or position) into a
maximally uncertain state. This completes the protocol
implementation.
Next we calculate the estimation errors for both

quadratures. If the players have estimated M(XG
n+1),

the position estimation error is

ex =M
(

[

aT 0 bT 0
]

[

I 0

G(n+1) I

]

v(n+1)

)

−M
(

XG
n+1

)

=M
([

[aT −1] + [bT 0]G(n+1) [bT 0]
]

v(n+1)

)

.

(23)

It is easy to see that the error has zero mean and we have
an unbiased estimation. The error variance is given by

Var(ex) =
∥

∥

[

[aT −1] + [bT 0]G(n+1)

]

R′
∥

∥

2

+
∥

∥[bT 0]R′−1
∥

∥

2
. (24)

The variance achieves 0 only when the qumodes are in-
finitely squeezed and the following equation holds true:

[aT −1] + [bT 0]G(n+1) = 0T . (25)

Eq. (25) can be rewritten as

[aT | bT ]
[

I ′

G′
(n+1)

]

= [0T | 1]. (26)

If the players have estimated M(PG
n+1), the momen-

tum estimation error is

ep (27)

=M
(

[

a′T 0 b′T 0
]

[

I 0

G(n+1) I

]

v(n+1)

)

−M
(

PG
n+1

)

=M
([

[a′T 0] + [b′T 0]G(n+1) − gTn+1 [b′T −1]
]

v(n+1)

)

.

(28)

The error ep also has zero mean and we again have an
unbiased estimation. Its variance is given by

Var(ep) =
∥

∥

[

[a′T 0] + [b′T 0]G′ − gTn+1

]

R′
∥

∥

2

+
∥

∥[b′T −1]R′−1
∥

∥

2
. (29)

To make the error variance equal to 0, we need the infinite
squeezing together with

[

[a′T 0] + [b′T 0]G′ − gTn+1

]

= 0T , (30)

which yields that

[a′T | b′T ]
[

I ′

G′′

]

= gTn+1. (31)

Finally, we discuss the threshold protocol of CPubC
by revealing the duality between QPvtQ and CPubC
schemes. We now show that under infinite squeezing, a
(k, n) threshold protocol can be implemented on CPubC
if and only if it can be implemented on QPvtQ. We have
proved that in CPubC scheme the existence of a set of
players who can perfectly estimate the secret is equivalent
to the consistency of Eqs. (26) and (31), and in QPvtQ
scheme that existence is equivalent to the consistency of
Eqs. (21) and (22). It is clear that Eqs. (22) and (31) are
the same, and Eq. (21) differs from Eq. (26) only by a
sign. Thus the existence of a (k, n) threshold protocol on
CPubC is equivalent to that on QPvtQ. Similar results
for the discrete variable were given in [34]. Furthermore,
from Theorem 2, a (k, n) threshold CPubC protocol ex-
ists if and only if n/2 < k ≤ n, and all these CPubC
protocols can be implemented using weighted CVGSs.

VI. CONCLUSION

This paper investigated three QSS schemes with CVGS
in details, namely, CPvtC, QPvtQ, and CPubC. We de-
signed implementation protocols for each scheme, and
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derived analytic formula for the estimation error. This
makes it possible to minimize the error variance by vary-
ing protocol parameters. We also showed that a (k, n)
threshold QSS protocol of the three schemes satisfying
n/2 < k ≤ n can be implemented by using a weighted
CVGS with infinite squeezing. These protocols cover all
the physically feasible threshold protocols for QPvtQ and
CPubC. Specifically, the perfect estimation for two non-
cooperative groups on QPvtQ is exclusive. Finally, the
duality between QPvtQ and CPubC schemes is discussed.
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Appendix A: Proof of Theorem 1

To guarantee all the (k, n) threshold protocols with
n/2 < k ≤ n can be implemented, the dealer only need
to make sure that they can implement the case when n =
2k − 1. In (k, 2k − 1) threshold protocols, any k players
can cooperatively get the secret. Even if less than k of the
2k − 1 qumodes are removed, any k players holding the
reserved qumodes can still obtain the secret. Hence, by
choosing arbitrary n players from the total 2k−1 players,
a (k, 2k−1) threshold protocol can be transformed into a
(k, n) protocol. Thus, to prove Theorem 1, we only need
to show that any (k, 2k−1) protocol can be implemented
using a weighted CVGS of infinite squeezing.
Suppose that in a communication system with one

dealer and 2k−1 players, a set of k players collaborate to
reveal the secret. Since Eq. (13) is a sufficient and neces-
sary condition for the k players to perfectly estimate the
secret, to guarantee they can get the secret, it is required
that Eq. (13) with n = 2k− 1 has solutions. In Eq. (13),
the 2k × 2k matrix

[

IJ,N 0

GJ,N cJ

]

maps a 2k-dimensional vector [aTJ bTJ ]
T to a 2k-

dimensional nonzero vector [0 · · · 0 1]T , where J =
{j1, · · · , jk} and N = {1, · · · , 2k − 1}. If this matrix is
full rank, there exists exactly one solution [aTJ bTJ ]. Since
the submatrix IJ,N is always full rank, we only need to
guarantee the submatrix [GJ,K cJ ] is full rank, where

K = N \ J . This condition can be satisfied by design-
ing the adjacency matrix G and the vector c. Here the
backslash denotes the set difference.
To show that it is a (k, 2k − 1) threshold protocol,

we also need to prove that any subset with fewer than
k players cannot estimate the secret within a finite error
bound. Indeed, we only need to prove there is no solution
to Eq. (13) if k is replaced by k−1. In this case, Eq. (13)
becomes

[

aTJ′ bTJ′

]

[

IJ′,N 0

GJ′,N cJ′

]

=
[

0 · · · 0 1
]

, (A1)

where J = {j′1, · · · , j′k−1}. Consider the first 2k − 1
columns of the matrix in Eq. (A1). The submatrix

[

IJ′,N

GJ′,N

]

maps [aTJ′ bTJ′ ] to a (2k−1)-dimensional zero vector. Since
the submatrix is full rank, [aTJ′ bTJ′ ] can only be a zero
vector, which contradicts the fact that bTJ′cJ′ = 1. So
Eq. (A1) has no solutions. Hence the theorem is proved.

Appendix B: Proof of Theorem 2

From quantum no-cloning theorem, we know that a
(k, n) threshold QPvtQ protocol must satisfy n/2 < k ≤
n. The largest possible value of n is 2k− 1. In this case,
[

I ′T | G′T
]T

is a 2n × (n + 1) matrix. Since there are

2(n − k) zeros in [ aT | bT ], only a 2k × 2k submatrix
[(IJ )

T (GJ,N )T ]T needs to be considered in Eqs. (21)
and (22). If this matrix is full rank, both Eqs. (21)
and (22) have a unique solution. The matrix IJ is al-
ways full rank, thus to make [(IJ )

T (GJ,N )T ]T full rank,
we need to the k × k submatrix GJ,K to be full rank as
well, where K = N \ J .
If for any k players, the corresponding GJ,K is full

rank, this CVGS can be used to implement a (k, 2k − 1)
threshold QPvtQ protocol. We can always find a proper
weighted CVGS satisfying this condition. If (k, 2k − 1)
protocols are obtained, the dealer can implement any
(k, n) protocol by picking n qumodes from a (2k − 1)-
mode CVGS and distributing to n players.

Appendix C: Proof of Theorem 3

Divide n players into two groups: one has k players
and the other n− k players. We need to show that if one
group can perfectly estimate the secret qumode (XS , PS),
the other group cannot estimate either XS or PS within
a finite error bound. If we can prove it is impossible that
one group perfectly estimates XS when the other group
perfectly estimates PS , the theorem is proved because
any nonzero estimation error must be unbounded under
infinite squeezing.
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If the group with k players can collaborate to estimate
the position distribution of the secret qumode perfectly,
we have

[

aTJ bTJ

]

[

IJ,M
GJ,M

]

=
[

0T
n −1

]

, (C1)

where M = {1, · · · , n+ 1}, and J is a k−subset of N =
{1, · · · , n}. From Eq. (C1), we obtain

bTJGJ,M\J =
[

0T
n−k −1

]

. (C2)

Denote the last column of GJ,M\J as v1.
For the other group, if they can collaborate to estimate

the momentum distribution of the secret mode, we get

[

aTK bTK

]

[

IK,M

GK,M

]

= gTn+1, (C3)

where K = N \ J . We then have

bTKGK,P = vT2 , (C4)

where P = M \ K and v2 = (gn+1)P (recall that gn+1

is the last column of G(n+1)). Hence vT2 = [vT1 0]. Since
GJ,N = [GJ,K v1], we can rewrite Eqs. (C2) and (C4) as

bTJ

[

GJ,K v1

]

=
[

0T
n−k −1

]

, (C5)

bTK

[

GK,J v3

]

=
[

vT1 0
]

, (C6)

where v3 is the last column of GK,P . From Eq. (C6), we
have vT1 = bTKGK,J . Substituting it into Eq. (C5), we get

bTJGJ,K [I | bK ] = [0T
n−k − 1],

which is a contradiction. Thus, it is impossible for one
group of players to perfectly estimate the position dis-
tribution, and the other to estimate the momentum dis-
tribution, if these two groups do not have any quantum
communication.
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