Skip to main content
Log in

Cryptanalysis of enhancement on “quantum blind signature based on two-state vector formalism”

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Recently, Yang et al. (Quantum Inf Process 12(1):109, 2013) proposed an enhanced quantum blind signature based on two-taste vector formalism. The protocol can prevent signatory Bob from deriving Alice’s message with invisible photon eavesdropping attack or fake photon attack. In this paper, we show that the enhanced protocol also has a loophole that Alice can utilize an entanglement swapping attack to obtain Bob’s secret key and forge Bob’s valid signature at will later. Then, we reanalyze two existing protocols and try to find some further methods to fix them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE Press, New York (1984)

  2. Zeng, G., Ma, W., Wang, X., Zhu, H.: Signature scheme based on quantum cryptography. Acta Electron. Sinica (in Chinese) 29(8), 1098 (2001)

    Google Scholar 

  3. Gottesman, D., Chuang, I.L.: Quantum Digital Signatures (2001). http://arxiv.org/abs/quant-ph/0105032.pdf

  4. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  5. Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5C6), 295 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Curty, M., Lütkenhaus, N.: Comment on “arbitrated quantum-signature scheme”. Phys. Rev. A 77, 046301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zeng, G.: Reply to comment on ‘arbitrated quantum-signature scheme’. Phys. Rev. A 78, 016301 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79, 054307 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82, 042325 (2010)

    Article  ADS  Google Scholar 

  10. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  11. Choi, J.W., Chang, K.Y., Hong, D.: Security problem on arbitrated quantum signature schemes. Phys. Rev. A 84, 062330 (2011)

    Article  ADS  Google Scholar 

  12. Wen, X.: An e-payment system based on quantum group signature. Phys. Scr. 82(6), 065403 (2010)

    Article  MATH  Google Scholar 

  13. Wen, X., Chen, Y., Fang, J.: An inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(1), 549 (2013)

    Google Scholar 

  14. Wen, X., Nie, Z.: An e-payment system based on quantum blind and group signature. In: Data, Privacy and E-Commerce (ISDPE), 2010 Second International Symposium, pp. 50–55 (2010)

  15. Cai, X.Q., Wei, C.Y.: Cryptanalysis of an inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12(4), 1651 (2013)

    Google Scholar 

  16. Yin, X.R., Ma, W.P., Liu, W.Y.: A blind quantum signature scheme with \(\chi \)-type entangled states. Int. J. Theor. Phys. 51, 455 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666 (2009)

    Article  ADS  Google Scholar 

  18. Su, Q., Huang, Z., Wen, Q., Li, W.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408 (2010)

    Article  ADS  Google Scholar 

  19. Wang, M.M., Chen, X.B., Niu, X.X., Yang, Y.X.: Re-examining the security of blind quantum signature protocols. Phys. Scr. 86(5), 055006 (2012)

    Article  MATH  Google Scholar 

  20. Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19(6), 060307 (2010)

    Article  ADS  Google Scholar 

  21. Xu, R., Huang, L., Yang, W., He, L.: Quantum group blind signature scheme without entanglement. Opt. Commun. 284(14), 3654 (2011)

    Article  ADS  Google Scholar 

  22. Shi, J., Shi, R., Guo, Y., Peng, X., Tang, Y.: Batch proxy quantum blind signature scheme. Sci. China Inf. Sci. 56(5), 1 (2013)

    Google Scholar 

  23. Shi, J., Shi, R., Tang, Y., Lee, M.: A multiparty quantum proxy group signature scheme for the entangled-state message with quantum Fourier transform. Quantum Inf. Process. 10(5), 653 (2011)

    Google Scholar 

  24. Shi, J., Shi, R., Guo, Y., Peng, X., Lee, M., Park, D.: A (t, n)-threshold scheme of multi-party quantum group signature with irregular quantum Fourier transform. Int. J. Theor. Phys. 51, 1038 (2012)

    Article  MATH  Google Scholar 

  25. Shi, R., Shi, J., Guo, Y., Lee, M.H.: Multiparty quantum group signature scheme with quantum parallel computation. In: Trust, Security and Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th International Conference, pp. 905–910 (2011)

  26. Yang, C.W., Hwang, T., Luo, Y.P.: Enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109 (2013)

    Google Scholar 

  27. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Improving the security of multiparty quantum secret sharing against an attack with a fake signal. Phys. Lett. A 357(2), 101 (2006)

    Article  ADS  MATH  Google Scholar 

  28. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: A simple participant attack on the brádler-dušek protocol. Quantum Info. Comput. 7(4), 329 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Lin, S., Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “multiparty quantum secret sharing of classical messages based on entanglement swapping”. Phys. Rev. A 76, 036301 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  30. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the hillery-bužek-berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  31. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “quantum exam [phys. lett. a 350 (2006) 174]. Phys. Lett. A 360(6), 748 (2007)

    Article  ADS  Google Scholar 

  32. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using greenbergerchorneczeilinger state. Opt. Commun. 283(1), 192 (2010)

    Article  ADS  Google Scholar 

  33. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  34. Guo, F.Z., Qin, S.J., Gao, F., Lin, S., Wen, Q.Y., Zhu, F.C.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D 56, 445 (2010)

    Article  ADS  Google Scholar 

  35. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  36. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  37. Huang, W., Guo, F.Z., Huang, Z., Wen, Q.Y., Zhu, F.C.: Three-particle QKD protocol against a collective noise. Opt. Commun. 284(1), 536 (2011)

    Article  ADS  Google Scholar 

  38. Walton, Z.D., Abouraddy, A.F., Sergienko, A.V., Saleh, B.E.A., Teich, M.C.: Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003)

    Article  ADS  Google Scholar 

  39. Huang, W., Wen, Q.Y., Jia, H.Y., Qin, S.J., Gao, F.: Fault tolerant quantum secure direct communication with quantum encryption against collective noise. Chin. Phys. B 21(10), 100308 (2012)

    Article  ADS  Google Scholar 

  40. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  45. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  46. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Eavesdropping on secure deterministic communication with qubits through photon-number-splitting attacks. Phys. Rev. A 79, 054303 (2009)

    Article  ADS  Google Scholar 

  47. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  48. Zhang, M., Xu, G.A., Chen, X.B., Yang, S., Yang, Y.X.: Attack on the improved quantum blind signature protocol. Int. J. Theor. Phys. 52(2), 331 (2013)

    Google Scholar 

  49. Rivest, R.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) Fast Software Encryption, Lecture Notes in Computer Science, vol. 1267, pp. 210–218. Springer, Berlin (1997)

    Chapter  Google Scholar 

  50. Lin, S., Wen, Q.Y., Gao, F., Zhu, F.C.: Quantum secure direct communication with \(\chi \)-type entangled states. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (Grant Nos. 61300181, 61272057, 61202434, 61170270, 61100203, 61003286, 61121061), NCET (Grant No. NCET-10-0260), Beijing Natural Science Foundation (Grant Nos. 4112040, 4122054), the Fundamental Research Funds for the Central Universities (Grant No. 2012RC0612, 2011YB01) and China Postdoctoral Science Foundation (Grant No. 2013M530561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Min Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Q., Li, WM. Cryptanalysis of enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf Process 13, 1245–1254 (2014). https://doi.org/10.1007/s11128-013-0722-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0722-6

Keywords

Navigation