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The idea of information encoding on quantum bearers and its quantum-mechanical processing
has revolutionized our world and brought mankind on the verge of enigmatic era of quantum tech-
nologies. Inspired by this idea, in present paper we search for advantages of quantum information
processing in the field of machine learning. Exploiting only basic properties of the Hilbert space,
superposition principle of quantum mechanics and quantum measurements, we construct a quantum
analog for Rosenblatt’s perceptron, which is the simplest learning machine. We demonstrate that
the quantum perceptron is superior its classical counterpart in learning capabilities. In particular,
we show that the quantum perceptron is able to learn an arbitrary (Boolean) logical function, per-
form the classification on previously unseen classes and even recognize the superpositions of learned
classes – the task of high importance in applied medical engineering.

PACS numbers: 03.67.Ac, 87.19.ll, 87.85.E-

I. INTRODUCTION

During last few decades, we have been witnessing unifi-
cation of quantum physics and classical information sci-
ence that resulted in constitution of new disciplines –
quantum information and quantum computation [1, 2].
While processing of information, which is encoded in sys-
tems exhibiting quantum properties suggests, for exam-
ple, unconditionally secure quantum communication [3]
and superdense coding [4], computers that operate ac-
cording to the laws of quantum mechanics offer efficient
solving of problems that are intractable on conventional
computers [5]. Having paramount practical importance,
these announced technological benefits have indicated the
main directions of the research in the field of quantum
information and quantum computation, somehow leaving
aside other potential applications of quantum physics in
information science. So far, for instance, very little at-
tention has been paid on possible advantages of quantum
information processing in such areas of modern informa-
tion science as machine learning [6] and artificial intelli-
gence [7]. Using standard quantum computation formal-
ism, it has been shown that machine learning governed by
quantum mechanics has certain advantages over classical
learning [8–13]. These advantages, however, are strongly
coupled with more sophisticated optimization procedure
than in the classical case, and thus require an efficiently
working quantum computer [14] to handle the optimiza-
tion. This paper, in contrast, presents a new approach to
machine learning, which, in the simplest case, does not
require any optimization at all.

Our focus is on perceptron, which is the simplest learn-
ing machine. Perceptron is a model of neuron that was
originally introduced by Rosenblatt [15] to perform visual
perception tasks, which, in mathematical terms, result
in solution of the linear classification problem. There
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are two essential stages of the perceptron functioning:
supervised learning session and new data classification.
During the first stage, the perceptron is given a labeled
set of examples. Its task is of inferring weights of a linear
function according to some error-correcting rule. Subse-
quently, this function is utilized for classification of new
previously unseen data.

In spite of its very simple internal structure and learn-
ing rule, the perceptron’s capabilities are seriously lim-
ited [16]. Perceptron can not provide the classification,
if there is an overlap in the data or if the data can not
be linearly separated. It is also incapable of learning
complex logical functions, such as XOR function. More-
over, by its design, the perceptron can distinguish only
between previously seen classes and, therefore, can not
resolve the situation when the input belongs to none of
the learned classes, or represents a superposition of seen
classes.

In this paper we show that all the mentioned problems
can be, in principle, overcome by a quantum analog for
perceptron. There are also two operational stages for the
quantum perceptron. During the learning stage all the
data are formally represented through quantum states of
physical systems. This representation allows expanding
the data space to a physical Hilbert space. It is important
to note, that there is no need to involve real physical sys-
tems during this stage. Thus, the learning is essentially
a classical procedure. The subject of the learning is a
set of positive operator valued measurements (POVM)
[1]. The set is constructed by making superpositions of
the training data in a way that each operator is responsi-
ble for detection of one particular class. This procedure
is linear and does not require solving equations or opti-
mizing parameters. When the learning is over, there are
two possibilities to achieve the required classification of
new data. First, new data are encoded into the states
of real quantum systems, which are measured by detec-
tors adjusted in accordance with the learned POVM. Sec-
ond, new data may be formally encoded into the states of
quantum systems and processed with the POVM. Both
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mentioned ways allow to achieve the classification.
This paper is organized as follows. In the next section,

we first overview the classical perceptron and discuss the
origin of the restrictions on its learning capabilities. After
this, in Section II B, we introduce the quantum percep-
tron and show its properties. We demonstrate, in Sec-
tion III, three examples of how the quantum perceptron
is superior its classical counterpart in learning capabil-
ities: complex logical function learning, classification of
new data on previously unseen classes and recognition of
superpositions of classes. We conclude in Section IV.

II. BASIC CONSTRUCTIONS

A. Rosenblatt’s Perceptron

Operational structure of the classical perceptron is
simple. Given an input vector x (which is usually called a
feature vector) consisting of n features, perceptron com-
putes a weighted sum of its components f(x) =

∑
i
aixi,

where weights ai have been previously learned. The out-
put from a perceptron is given by o = sign(f(x)), where
sign(...) is the Heaviside function

sign(y) = {
+1 y > 0
−1 y ≤ 0

. (1)

Depending on the binary output signal o ∈ {+1,−1}, the
input feature vector x is classified between two feature
classes, one of which is associated with output o = +1
and the other with output o = −1.
As we have mentioned above, the perceptron needs

to be trained before its autonomous operation. During
the training, a set of P training data pairs {xi, di, i =
1, ..., P} is given, where xi are the n-dimensional feature
vectors and di are desired binary outputs. Typically, at
the beginning of the learning procedure the initial weights
ai of the linear function are generated randomly. When
a data pair is chosen from the training set, the output
oi = sign(f(xi)) is computed from the input feature vec-
tor xi and is compared to the desired output di. If the
actual and the desired outputs match oi = di, the weights
ai are left without change and the next pair from the data
set is taken for the analysis. If oi 6= di, the weights ai
of the linear function are to be changed according to the
error-correcting rule a′ = a+ǫa = a+(di−oi)xi, which is
applied hereafter and until the condition oi = di is met.
The training procedure has clear geometric interpre-

tation. The weights ai of the linear function define a
(n− 1)-dimensional hyperplane in the n-dimensional fea-
ture space. The training procedure results in a hyper-
plane that divides the feature space on two subspaces,
so that each feature class occupies one of the subspaces.
Due to this interpretation, the origin of the restrictions on
learning capabilities of the classical perceptron becomes
visible: a hyperplane that separates the two classes may
not exist. The simplest example of two classes that can

FIG. 1: The feature space of XOR function is two-dimensional
and discrete (each feature takes only values 0 and 1). There is
no line (a one-dimensional hyperplane) that separates black
and grey points. Classical perceptron is incapable of classi-
fying the input feature vectors and, therefore, can not learn
XOR function.

not be linearly separated is XOR logical function of two
variables, which is given by the truth table

x1 0 0 1 1
x2 0 1 0 1
f 0 1 1 0
o −1 +1 +1 −1

. (2)

A schematic representation of this function in the two-
dimensional feature space is shown in Fig. 1.
There are, however, limitations on the learning capa-

bilities of the perceptron even in the case when the sep-
arating hyperplane exists. As we mentioned above the
hyperplane divides the feature space on two subspaces,
in spite of the fact that the feature classes occupy two
particular hypervolumes. This enforces the classification
on the two learned classes even so the given feature is es-
sentially different from the classes, i.e. form a new class.
It is very important to note that certain tasks undoable

by Rosenblatt’s perceptron, such as complex logical func-
tions learning and classifying data with an overlap, can
be performed in the framework of more sophisticated
classical learning models, for example, by support vec-
tor machines [6]. However, these classical implementa-
tions always demand nonlinear optimization, which com-
plicates rapidly with growth of the feature space. This
effect is known as the curse of dimensionality of the clas-
sical learning models [6]. In the next section, we present
a new model for the learning machine, which, however,
is linear, but is superior Rosenblatt’s perceptron in its
learning capabilities.

B. A quantum analog for Rosenblatt’s perceptron

As its classical counterpart, quantum perceptron is to
be trained to perform the classification task. Suppose, we
are given a set of K training data pairs consisting of fea-
ture vectors {xk, dk, k = 1, ...,K} with the desired binary
outputs d ∈ {+1,−1}; and each feature vector consists of
n features x = {x1, x2, ..., xn}. Let us suppose that each
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feature is restricted in a certain interval, so that all fea-
tures can be normalized to the unit interval x′

k
∈ [0, 1] for

k = 1, ..., n. This allows us to represent the input feature
vectors through the states of a (discrete) 2n-dimensional
quantum system, so that |x〉 = |x′1, x

′

2, ..., x
′

n〉. With this
quantum representation we have extended the classical
n-dimensional feature space to 2n-dimensional Hilbert
space of the quantum system. We shall drop ”primes”
hereafter assuming that the features are normalized.
Let us construct a projection operator |x〉 〈x| for each

given feature vector |x〉. With the help of these projec-
tors, let us define two operators

P−1 =
1

N−1

∑

d=−1

|x〉 〈x| ,

P+1 =
1

N+1

∑

d=+1

|x〉 〈x| , (3)

where N−1 and N−1 are normalization factors. All fea-
ture vectors that correspond to the output d = −1 are
summed in the operator P−1, while all feature vectors
corresponding d = +1 are collected in P+1. The con-
struction of these operators concludes the learning pro-
cedure.
There are only four possibilities of how the operators

P−1 and P+1 may be related:
A. Operators P−1 and P+1 are orthogonal P−1P+1 = 0

and form a complete set P−1 + P+1 = I, where I is the
identity operator. This means that there was no overlap
between the training data, and the two classes P−1 and
P+1 occupy the whole feature space. As the result any
input feature vector can be classified between the two
classes with no mistake. This situation can be simulated
in principle by the classical perceptron.
B. Operators P−1 and P+1 are orthogonal P−1P+1 = 0,

but do not form a complete set P−1 + P+1 6= I. This is
an extremely interesting case. The third operator must
be defined as P0 = I − P−1 − P+1 to fulfill the POVM
competence requirement. The operator P0 is, moreover,
orthogonal to P−1 and P+1, because P−1P+1 = 0. When
operating autonomously, the quantum perceptron gen-
erates three outputs d ∈ {+1, 0,−1}, namely that the
feature vector belongs to the one of the previously seen
classes d ∈ {+1,−1} or it is essentially different from the
learned classes d = 0 – it belongs to a new previously un-
seen class. The classification on previously unseen classes
is an extremely hard learning problem, which can not be
done by classical perceptron neither by the most of the
classical perceptron networks [6]. Quantum perceptron is
capable of performing this task. Moreover, there will be
no mistake in the classification between the three classes
because of the orthogonality of the operators P−1, P+1

and P0.
C. Operators P−1 and P+1 are not orthogonal

P−1P+1 6= 0, but form a complete set P−1 + P+1 = I.
In this case all the input data can be classified between
the two classes with some nonzero probability of mistake.
This is the case of probabilistic classification, which can

not be done by the classical perceptron, although can be
performed by more sophisticated classical learning mod-
els.
D. The most general case is when operators P−1 and

P+1 are not orthogonal P−1P+1 6= 0 and do not form a
complete set P−1+P+1 6= I. One again defines the third
operator P0 = I − P−1 − P+1, which this time is not
orthogonal to P−1 and P+1. In this situation, quantum
perceptron classifies all the input feature vectors on three
classes, one of which is a new class, with some nonzero
probability of mistake. This situation can not be simu-
lated by the classical perceptron.
The quantum perceptron learning rule may have the

following geometric interpretation. In contrast to the
classical perceptron, which constructs a hyperplane sep-
arating the feature space on two subspaces, quantum per-
ceptron constructs two (hyper-)volumes in the physical
Hilbert space. These volumes are defined by the POVM
operators (3). During the autonomous functioning, the
POVM operators project the given feature vector |ψ〉 to
one of the volumes (or to the space unoccupied by them)
allowing us to perform the desired classification. For
example, if 〈ψ|P−1 |ψ〉 6= 0, while 〈ψ|P+1 |ψ〉 = 0 and
〈ψ|P0 |ψ〉 = 0, the feature vector |ψ〉 belongs to the class
d = −1, and the probability of misclassification equals
zero. If, in contrast, 〈ψ|P−1 |ψ〉 6= 0, 〈ψ|P+1 |ψ〉 6= 0
and 〈ψ|P0 |ψ〉 = 0, the feature vector belongs to the two
classes with degrees defined by the corresponding expec-
tation values 〈ψ|P−1 |ψ〉 and 〈ψ|P+1 |ψ〉. In the latter
situation, one may perform a probabilistic classification
according to the expectation values.
We would like to stress that the construction of the

operators (3) is no way unique. There may be more so-
phisticated ways to construct the POVM set in order to
ensure a better performance of the learning model for
a classification problem at hand. In fact, our construc-
tion is the simplest liner model for a quantum learning
machine. Only in this sense the presented quantum per-
ceptron is the analog for Rosenblatt’s perceptron, while
their learning rules are essentially different.
As we mentioned in the Introduction, there are two

ways to achieve the desired classification with the POVM.
One may get real physical systems involved or use the
POVM operators as purely mathematical instrument. In
order of clarity, the advantages of the first of these ap-
proaches will be discusses in Section IIIA on particular
examples, while in the rest of the next section we use the
quantum perceptron as pure mathematical tool.

III. APPLICATIONS

In spite of the extreme simplicity of its learning rule,
quantum perceptron may perform a number of tasks in-
feasible for classical (Rosenblatt) perceptron. In this sec-
tion we give three examples of such tasks. We start with
logical function learning. Historically, the fact that clas-
sical perceptron can not learn an arbitrary logical func-
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tion was the main limitation on the learning capabili-
ties of this linear model [16]. We show that quantum
perceptron, in contrast, is able of learning an arbitrary
logical function irrespective of its kind and order. In
Section III B, we show that quantum perceptron can, in
certain cases, perform the classification without previous
training, the so-called unsupervised learning task. Clas-
sical perceptron, in contrast, can not perform this task
by construction. Finally, in Section III C we show that
quantum perceptron may recognize superpositions of pre-
viously learned classes. This task is of particular inter-
ests in applied medical engineering, where simultaneous
and proportional myoelectric control of artificial limb is
a long desired goal [18].

A. Logical Function Learning

Let us consider a particular example of logical function
– XOR, which is given by the truth table (2). During the
learning session, we are given a set of four training data
pairs {xi, di, i = 1, ..., 4}, where the feature vector con-
sists of two features x ∈ {x1, x2}, and the desired output
d ∈ {+1,−1} is a binary function. Let us represent the
input features through the states of a two-dimensional
quantum system – qubit, so that each feature is given
by one of the basis states |xi〉 ∈ {|0〉 , |1〉} for i = 1, 2,
where {|0〉 , |1〉} denotes the computational basis for each
feature. In the above representation, the feature vector x
is given by one of the four two-qubit states |x1, x2〉. Fol-
lowing the procedure, which is described in Section II B,
the POVM operators are constructed as

P−1 = |0, 0〉 〈0, 0|+ |1, 1〉 〈1, 1| ,

P+1 = |0, 1〉 〈0, 1|+ |1, 0〉 〈1, 0| . (4)

During its autonomous operation, quan-
tum perceptron may be given four basis states
|x1, x2〉 ∈ {|0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉} as inputs. Since
〈x1, x2|P−1 |x1, x2〉 6= 0 only for |x1, x2〉 ∈ {|0, 0〉 , |1, 1〉},
these states are classified to d = −1, while the other two
states {|0, 1〉 , |1, 0〉} are classified to d = +1. The fact
that the operators P−1 and P+1 are orthogonal ensures
zero probability of misclassification, while the complete-
ness of the set of operators guarantees classification of
any input. Conclusively, the quantum perceptron has
learned XOR function.
The successful XOR function learning by quantum per-

ceptron is the consequence of the representation of the
classical feature vector x through the two-qubit states.
In the classical representation, the feature vectors can
not be linearly separated on a plane, see Fig. 1. In the
quantum representation, four mutually orthogonal states
|x1, x2〉 in the four-dimensional Hilbert space can be sep-
arated on two classes in an arbitrary fashion. This im-
plies that an arbitrary logical function of two variables
can be learned by quantum perceptron. For example,
learning of logical AND function leads to the construction

of operators P−1 = |0, 0〉 〈0, 0| + |0, 1〉 〈0, 1| + |1, 0〉 〈1, 0|
and P+1 = |1, 1〉 〈1, 1|. Moreover, an arbitrary logical
function of an arbitrary number of inputs (arbitrary or-
der) also can be learned by quantum perceptron, because
the number of inputs of such a function growth exponen-
tially as 2n with the order of the function n and exactly as
fast as dimensionality of the Hilbert space that is needed
to represent the logical function.
In the above discussion the need to use real quantum

systems has not emerged. Let us now consider a situa-
tion, when one can benefit from utilizing real quantum
systems. Let us slightly modify the problem of XOR
learning. In real-life learning tasks the training data may
be corrupted by noise [6]. In some cases, noise may lead
to overlapping of the training data, which result in mis-
classification of feature vectors during the training stage
and during further autonomous functioning. For exam-
ple, if, during the XOR learning, there is a finite small
probability δ that feature x1 takes a wrong binary value,
but the other feature and the desired output are not af-
fected by noise, after a big number of trainings (which
are usually required in case of learning from noisy data),
the POVM operators are given by

P ′

−1 = (1− δ) (|0, 0〉 〈0, 0|+ |1, 1〉 〈1, 1|)

+ δ (|0, 1〉 〈0, 1|+ |1, 0〉 〈1, 0|) ,

P ′

+1 = (1− δ) (|0, 1〉 〈0, 1|+ |1, 0〉 〈1, 0|)

+ δ (|0, 0〉 〈0, 0|+ |1, 1〉 〈1, 1|) . (5)

Operators P ′

−1 and P ′

+1 are not orthogonal
P ′

−1P
′

+1 6= 0 in contrast to operators (4), but still form
a complete set. This means that during the autonomous
operation of the quantum perceptron, the input feature
vectors can be misclassified. Nevertheless, each feature is
classified between the two classes and, on average, most
of the feature vectors are classified correctly. This means
that quantum perceptron simulates XOR function with
a degree of accuracy given by 1− δ.
If we use real physical systems to encode feature vec-

tors during autonomous functioning of the perceptron
and measure the states of the systems with experimen-
tal setup adjusted in accordance with the POVM (5),
we can perform a probabilistic classification. Moreover,
we can exactly (in probabilistic sense) reproduce fluctu-
ations that have been observed during the training. In
certain sense such learning is too accurate and may be of
use in some cases. Anyway, classical perceptron can not
do any similar task.
It is, however, important to note that practical sim-

ulation of quantum perceptron with real physical sys-
tems may not be always possible. In Section II B we
discussed situations when operators P−1 and P+1 do not
form a compete set, and constructed the third operator
P0 = I − P−1 − P+1. It is possible in principle that the
constructed operator P0 is negative, i.e. unphysical. This
means that the classification problem at hand can not be
physically simulated with our linear model, although the
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problem may be treated mathematically with the quan-
tum perceptron approach.
In this section we have seen how quantum representa-

tion and quantum measurements contribute to advanced
learning abilities of the quantum perceptron. Even with-
out these features, however, quantum perceptron is su-
perior its classical counterpart in learning capabilities
due to specific algebraic structure of the POVM oper-
ators. In the following sections we provide two examples,
where advanced learning relays only on the structure of
the POVM set.

B. Unsupervised Learning

The (supervised) learning stage, has been embedded
into quantum perceptron by analogy with classical per-
ceptron. Surprisingly, however, that the learning rule of
the quantum perceptron allows to perform learning tasks
beyond supervised learning paradigm. Suppose, for ex-
ample, that we are given an unlabeled set of feature vec-
tors and need to find a possible structure of this set, i.e.
we need to answer whether there are any feature classes
in the set. The following protocol allows us to resolve
such an unsupervised learning task under certain condi-
tions.
Being given the first feature vector |x1〉 from the set,

let us define two classes with the POVM operators

P
(0)
−1 = |x1〉 〈x1| ,

P
(0)
+1 = I − P

(0)
−1 . (6)

where I is the identity operator. Here, the class d = +1 is
formally defined as ”not d = −1”. The next given feature
vector |x2〉 is tested to belong to one of these classes. If

〈x2|P
(0)
−1 |x2〉 > 〈x2|P

(0)
+1 |x2〉, the feature vector |x2〉 is

close enough to |x1〉 and thus belongs to class d = −1.
In this case the POVM operators (6) are updated to

P
(1)
−1 = |x1〉 〈x1|+ |x2〉 〈x2| ,

P
(1)
+1 = I − P−1 . (7)

If, in contrast, 〈x2|P
(0)
−1 |x2〉 ≥ 〈x2|P

(0)
+1 |x2〉, the feature

vector |x2〉 is distant sufficiently from |x1〉 and therefore
can be assigned a new class d = +1. Due to the first
representative of the d = +1 class, we may update the

formal definition of the P
(0)
+1 introducing a new POVM

set

P
(1)
−1 = |x1〉 〈x1| ,

P
(1)
+1 = |x2〉 〈x2| . (8)

This procedure is repeated iteratively until all the feature
vectors are classified between the two classes d = −1 and
d = +1.

The above protocol will work if only there are at least
two feature vectors |x〉 and |y〉 in the given feature set
such as 〈x| (I − 2P ) |x〉 ≥ 0, where P = |y〉 〈y|. In the
opposite case, unsupervised learning within the protocol
is not possible. Moreover, the classification crucially de-
pends on order of examples, because first seen feature
vectors define the classes. This situation is, however,
typical for unsupervised learning models [6]. To reduce
the dependence of the classification on the order of the
feature vectors appearance, it is possible to repeat the
learning many times taking different order of the input
feature vectors, and compare the results of the classifi-
cation. In spite of the above limitations, the unsuper-
vised classification can be in principle performed by the
quantum perceptron, while this task is undoable for the
classical perceptron.

C. Simultaneous and Proportional Myoelectric

Control

The problem of signal classification has found remark-
able applications in medical engineering. It is known
that muscle contraction in human body is governed by
electrical neural signals. These signals can be acquired
by different means [17], but are typically summarized
into so-called electromyogram (EMG). In principle, pro-
cessing the EMG, one may predict muscular response to
the neural signals and subsequent respond of the body.
This idea is widely used in many applications, includ-
ing myoelectric-controlled artificial limb, where the sur-
face EMG is recorded from the remnant muscles of the
stump and used, after processing, for activating certain
prosthetic functions of the artificial limb, such as hand
open/close [18].
Despite decades of research and development, however,

none of the commercial prostheses is using pattern clas-
sification based controller [18]. The main limitation on
successful practical application of pattern classification
for myoelectric control is that it leads to very unnatural
control scheme. While natural movements are contin-
uous and require activations of several degrees of free-
dom (DOF) simultaneously and proportionally, classical
schemes for pattern recognition allow only sequential con-
trol, i.e. activation of only one class that corresponds to
a particular action in one decision [18]. Simultaneous ac-
tivation of two DOFs is thus recognized as a new class
of action, but not as a combination of known actions.
Moreover, all these classes as well as their superpositions
must be previously learned. This leads to higher rehabil-
itation cost and more frustration of the user, who must
spend hours in a lab to learn the artificial limb control.
Recently, we have taken quantum perceptron approach

to the problem of simultaneous and proportional myo-
electric control [19]. We considered a very simple control
scheme, where two quantum perceptrons were control-
ling two degrees of freedom of the wrist prosthesis. We
took EMG signals with corresponding angles of the wrist
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position from an able-bodied subject who performs wrist
contractions. For the training we used only those EMG
that correspond to the activation of a single DOF. During
the test, the control scheme was given EMG activating
multiple DOFs. We found that in 45 of 55 data blocks of
the actions were recognized correctly with accuracy ex-
ceeding 73%, which is comparable to the accuracy of the
classical schemes for classification.
In the above example, we used a specific representation

of the feature vectors. Since the features (i.e. the neural
signals) are real and positive numbers there was no need
to expand the feature space. Moreover, in general it is not
possible to scale a given feature on the unit interval, be-
cause the neural signals observed during the learning and
autonomous functioning may differ significantly in ampli-
tude, and a priori scaling may lead to misapplication of
the artificial limb. Therefore, the amplitude of a signal
was normalized over amplitudes from all the channels to
ensure proportional control of the prosthesis. In fact, the
specific structure of the POVM set was the only feature of
the quantum perceptron that we used. With this feature
alone we were able to recognize 4 original classes observed
during the training and 4 new (previously unseen) classes
that correspond to simultaneous activation of two DOF.
In general, within the above control scheme, n quantum
perceptrons are able to recognize 2n original classes with
(2n)!/[2(2n− 2)!]−n additional two-class superpositions
of these classes. In contrast, n classical perceptrons may
recognize only 2n classes, which were seen during the
learning. The advantage of the quantum perceptron over
the classical perceptron can be understood from the ge-
ometric interpretation discussed in Section II B. While
n classical perceptrons construct n hyperplanes in the

feature space, which separate the feature space on 2n
non-overlapping classes, n quantum perceptrons build n
hypervolumes, which may not fill the whole feature space
and may overlap.

IV. CONCLUSION

Bridging between quantum information science and
machine learning theory, we showed that the capabili-
ties of an autonomous learning automata can be dramat-
ically increased using the quantum information formal-
ism. We have constructed the simplest linear quantum
model for learning machine, which, however, is superior
its classical counterpart in learning capabilities. Due to
the quantum representation of the feature vectors, the
probabilistic nature of quantum measurements and the
specific structure of the POVM set, the quantum per-
ceptron is capable of learning an arbitrary logical func-
tion, performing probabilistic classification, recognizing
superpositions of previously seen classes and even clas-
sifying on previously unseen classes. Since all classical
learning models track back to Rosenblatt’s perceptron,
we hope that the linear quantum perceptron will serve
as a basis for future development of practically powerful
quantum learning models, and especially in the domain
of nonlinear classification problems.
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