Skip to main content
Log in

Quantum random walk polynomial and quantum random walk measure

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the paper, we introduce a quantum random walk polynomial (QRWP) that can be defined as a polynomial \(\{P_{n}(x)\}\), which is orthogonal with respect to a quantum random walk measure (QRWM) on \([-1, 1]\), such that the parameters \(\alpha _{n},\omega _{n}\) are in the recurrence relations

$$\begin{aligned} P_{n+1}(x)= (x - \alpha _{n})P_{n}(x) - \omega _{n}P_{n-1}(x) \end{aligned}$$

and satisfy \(\alpha _{n}\in \mathfrak {R},\omega _{n}> 0\). We firstly obtain some results of QRWP and QRWM, in which case the correspondence between measures and orthogonal polynomial sequences is one-to-one. It shows that any measure with respect to which a quantum random walk polynomial sequence is orthogonal is a quantum random walk measure. We next collect some properties of QRWM; moreover, we extend Karlin and McGregor’s representation formula for the transition probabilities of a quantum random walk (QRW) in the interacting Fock space, which is a parallel result with the CGMV method. Using these findings, we finally obtain some applications for QRWM, which are of interest in the study of quantum random walk, highlighting the role played by QRWP and QRWM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kempe, J.: Quantum random walks—an introductory overview. Contemp. Phys. 44, 307–327 (2003)

    Article  ADS  Google Scholar 

  2. Romanelli, A., Sicardi schifino, A.C., Siri, R.: Quantum random walk on the line as a Markovian process. Phys. A 338, 395–405 (2004)

    Article  MathSciNet  Google Scholar 

  3. Karlin, S., McGregor, J.L.: Representation of a class of stochastic processes. Proc. Natl. Acad. Sci. USA 41, 387–391 (1955)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Karlin, S., McGregor, J.L.: Random walks. Ill. J. Math. 3, 66–81 (1959)

    MathSciNet  MATH  Google Scholar 

  5. van Doom, E.A., Schrijner, P.: Geometric ergodicity and quasi-stationarity in discrete-time birth–death processes. J. Aust. Math. Soc. (B) 37, 121–144 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Obata, N.: One-mode interacting Fock spaces and random walks on graphs. Stoch. Int. J. Probab. Stoch Process. 84(2–3), 383–392 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hora, A., Obata, N.: Quantum Probability and Spectral Analysis of Graphs. Springer, Berlin (2007)

    MATH  Google Scholar 

  8. Tregenna, B., Flanagan, W., Maile, W., Kendon, V.: Controlling discrete quantum walks:coins and initial states. N. J. Phys. 5, 83 (2003)

    Article  Google Scholar 

  9. Childs, A.M., Farhi, E., Gutmann, S.: An example of the difference between quantum and classical random walks. Quantum Inf. Process. 1, 35–43 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ben-Avraham, D., Bollt, E., Tamon, C.: One-dimensional continuous-time quantum walks. Quantum Inf. Process. 3, 295–308 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lovász, L.: Random walks on graphs: a survey, combinatorics, Paul Erdiös is Eighty, vol. 2. Keszthely, Hungary, pp. 1–46 (1993)

  12. Kempe, J.: Discrete quantum walks hit exponentially faster. Probab. Theory Relat. Fields 133(2), 215–235 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Konno, N.: Limit theorem for continuous-time quantum walk on the line. Phys. Rev. E 72, 026113 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Konno, N.: One-dimensional discrete-time quantum walks on random environments. Quantum Inf. Proc. 8, 387–399 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Venegas-Andraca, S.E.: Quantum Walks for Computer Scientists. Morgan and Claypool, Los Altos, CA (2008)

    MATH  Google Scholar 

  16. Konno, N.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12, 33–53 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85, 551–574 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Cantero, M.J., Grünbaum, F.A., Moral, L., Velázquez, L.: Matrix valued Szegö polynomials and quantum walks. Commun. Pure Appl. Math. 63, 464–507 (2010)

    MATH  Google Scholar 

  19. Cantero, M.J., Moral, L., Velázquez, L.: Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl. 362, 29–56 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cantero, M.J., Grünbaum, F.A., Moral, L., Velázquez, L.: The CGMV method for quantum walks. Quantum Inf. Process. 11, 1149–1192 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Konno, N., Obata, N., Segawa, E.: Localization of the Grover walks on spidernets and free Meixner laws. Commun. Math. Phys. 322(3), 667–695 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Ambainis, A., Bach, E. , Nayak, A., Vishwanath, A., Watrous, J. : One-dimensional quantum walks. In: Proceedings of the 33th ACM Symposium on The Theory of Computation (STOC’01) ACM, pp. 60–69 (2001)

  23. Alagić, G., Russell, A.: Decoherence in quantum walks on the hypercube. Phys. Rev. A 72, 062304 (2005)

    Article  ADS  Google Scholar 

  24. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanbao Kang.

Additional information

This research is supported by the National Natural Science Foundation of China (Grant No. 11061032) and Natural Science Foundation of Gansu Province (Grant No. 0710RJZA106).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Y., Wang, C. Quantum random walk polynomial and quantum random walk measure. Quantum Inf Process 13, 1191–1209 (2014). https://doi.org/10.1007/s11128-013-0724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0724-4

Keywords

Mathematics Subject Classification:

Navigation