Skip to main content
Log in

SQR: a simple quantum representation of infrared images

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A simple quantum representation (SQR) of infrared images is proposed based on the characteristic that infrared images reflect infrared radiation energy of objects. The proposed SQR model is inspired from the Qubit Lattice representation for color images. Instead of the angle parameter of a qubit to store a color as in Qubit Lattice representation, probability of projection measurement is used to store the radiation energy value of each pixel for the first time in this model. Since the relationship between radiation energy values and probability values can be quantified for the limited radiation energy values, it makes the proposed model more clear. In the process of image preparation, only simple quantum gates are used, and the performance comparison with the latest flexible representation of quantum images reveals that SQR can achieve a quadratic speedup in quantum image preparation. Meanwhile, quantum infrared image operations can be performed conveniently based on SQR, including both the global operations and local operations. This paper provides a basic way to express infrared images in quantum computer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Feynman, R.P.: Simulating physics with computer. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Deutsch, D.: Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A400, 97–117 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  3. Deutsch, D.: Quantum computational networks. Proc. Soc. Lond. A425, 73–90 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  4. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Almitos, CA (1994)

  5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM, New York (1996)

  6. Divincenzo, D.P.: Two-bit gates are universal for quantum computation. Phy. Rev. A 50, 1015 (1995)

    Article  ADS  Google Scholar 

  7. Aharonov, D., Van Dam, W., Kempe, J. Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th FOCS, pp. 42–45 (2004)

  8. Childs, A.M.: Universal computation by quantum walk. Phys. Rev. Lett. 102, 80501 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  9. Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  10. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11, 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Shen, J.-Q.: Gain-assisted negative refractive index in a quantum coherent medium. Progress Electromagn. Res. 133, 37–51 (2013)

    Article  Google Scholar 

  12. Monroe, C., Kim, J.: Scaling the ion trap quantum processor. Science 339, 1164–1169 (2013)

    Article  ADS  Google Scholar 

  13. Black, P.E., Kuhn, D.R., Williams, C.J.: Quantum computing and communication. Adv. Comput. 56, 189–244 (2002)

    Article  Google Scholar 

  14. Williams, C.P., Clearwater, S.H.: Ultimate Zero and One: Computing at the Quantum Frontier. Springer, Berlin (2000)

    Book  Google Scholar 

  15. Nielsen, M.A., Chuang I. L.: Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

  16. Tseng, C.C., Ming T.: Quantum digital image processing algorithms. In: 16th IPPR Conference on Computer Vision, Graphics and Image Processing, pp. 827–834, Kinmen, ROC (2003)

  17. Latorre, J.I.: Image Compression and Entanglement. arXiv: quant-ph/0510031 (2003)

  18. Venegas-Andraca, S.E., Bose S.: Storing, processing and retrieving an image using quantum mechanics. In: AeroSense 2003, International Society for Optics and Photonics, pp. 137–147 (2003)

  19. Venegas-Andraca, S.E., Ball, J.L.: Processing image in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  20. Le, P.Q., Dong, F-y, Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bennett, C.H., Divincenzo, D.P.: Quantum information and computation. Nature 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  22. Wiesner, S.: Simulations of Many-Body Quantum Systems by a Quantum Computer. arXiv, preprint quant-ph/9603028, 110 (1996)

  23. Abrans, D.S., Lloyd, S.: Simulations of many-body Hermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586–2589 (1997)

    Article  ADS  Google Scholar 

  24. Cochran, W.G.: Sampling Techniques. Wiley, USA (1978)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the China Postdoctoral Science Foundation (2013M540837), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20121102130001) and the National Natural Science Foundation of China (61103097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijiang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuan, S., Mao, X., Xue, Y. et al. SQR: a simple quantum representation of infrared images. Quantum Inf Process 13, 1353–1379 (2014). https://doi.org/10.1007/s11128-014-0733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0733-y

Keywords

Navigation