Skip to main content
Log in

Efficient entanglement purification via quantum communication bus

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme is proposed to implement entanglement purification for two remote less entangled photons using robust continuous variable coherent modes, called as quantum communication bus (qubus), rather than consuming expensive ancilla single-photon sources. The qubus beams in the coherent states provide for the natural communication in the purification protocol, instead of the classical communication between the distant photons. Weak cross-Kerr nonlinearities, qubus beams and quantum non-demolition (QND) photon-number-resolving measurement are utilized for implementing deterministic entanglement purification. The core element to realize the QND measurement is Kerr nonlinearity. The necessary QND measurement in the present scheme is not an extra, very difficult, addition to the present protocol, but is taken care of by a phase measurement. The entanglement purification protocol (EPP) can obtain a maximally entangled pair with only one step, instead of improving the fidelity of less entangled pairs by performing continuous indefinite iterative purification procedure. The total success probability and fidelity of the present purification scheme can approach unit in principle. In addition, we investigate photon loss of the qubus beams during the transmission and decoherence effects in the entanglement purification caused by such a photon loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P.L., Horodecki, M.L., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865–942 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Cr Epeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  6. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998)

    Google Scholar 

  7. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  8. Pan, J., Simon, C., Brukner, C., Zeilinger, A.: Entanglement purification for quantum communication. Nature 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  9. Pan, J., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    Article  ADS  Google Scholar 

  10. Deng, F.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  11. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)

    Article  ADS  Google Scholar 

  12. Sangouard, N., Simon, C., Coudreau, T., Gisin, N.: Purification of single-photon entanglement with linear optics. Phys. Rev. A 78, 050301 (2008)

    Article  ADS  Google Scholar 

  13. Shi, B., Jiang, Y., Guo, G.: Optimal entanglement purification via entanglement swapping. Phys. Rev. A 62, 054301 (2000)

    Article  ADS  Google Scholar 

  14. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  15. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  16. Zhao, Z., Pan, J., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  17. Simon, C., Pan, J.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  18. Sheng, Y., Deng, F.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)

    Article  ADS  Google Scholar 

  19. Li, X.: Deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044304 (2010)

    Article  ADS  Google Scholar 

  20. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  21. Sheng, Y., Deng, F.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  22. Sheng, Y., Zhou, L., Zhao, S., Zheng, B.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  23. Sheng, Y., Zhou, L., Zhao, S.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  24. Song, X., Feng, X., Kwek, L.C., Oh, C.H.: Entanglement purification based on photonic polarization parity measurements. J. Phys. B: At. Mol. Opt. Phys. 38, 2827–2832 (2005)

    Article  ADS  Google Scholar 

  25. Kok, P., Lovett, B.: Introduction to Optical Quantum Information Processing. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  26. Milburn, G.J.: Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989)

    Article  ADS  Google Scholar 

  27. Munro, W.J., Nemoto, K., Spiller, T.P.: Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005)

    Article  ADS  Google Scholar 

  28. Imoto, N., Haus, H.A., Yamamoto, Y.: Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys. Rev. A 32, 2287–2292 (1985)

    Article  ADS  Google Scholar 

  29. Louis, S.G.R., Nemoto, K., Munro, W.J., Spiller, T.P.: The efficiencies of generating cluster states with weak nonlinearities. New J. Phys. 9, 193 (2007)

    Article  ADS  Google Scholar 

  30. Zhao, C.R., Ye, L.: Robust scheme for the preparation of symmetric Dicke states with coherence state via cross-Kerr nonlinearity. Opt. Commun. 284, 541–544 (2011)

    Article  ADS  Google Scholar 

  31. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    Article  ADS  Google Scholar 

  32. He, B., Nadeem, M., Bergou, J.A.A.: Scheme for generating coherent-state superpositions with realistic cross-Kerr nonlinearity. Phys. Rev. A 79, 035802 (2009)

    Article  ADS  Google Scholar 

  33. Bachor, H., Ralph, T.C.: A Guide to Experiments in Quantum Optics. Wiley-VCH, Weinheim (2004)

    Book  Google Scholar 

  34. Zhu, M.Z., Yin, X.G.: Highly efficient optical Fredkin gate with weak nonlinearities and classical information feed-forward. J. Opt. Soc. Am. B 30, 355–361 (2013)

    Article  ADS  Google Scholar 

  35. Gerry, C.C., Bui, T.: Quantum non-demolition measurement of photon number using weak nonlinearities. Phys. Lett. A 372, 7101–7104 (2008)

    Article  ADS  MATH  Google Scholar 

  36. Jiang, L.A., Dauler, E.A., Chang, J.T.: Photon-number-resolving detector with 10 bits of resolution. Phys. Rev. A 75, 062325 (2007)

    Article  ADS  Google Scholar 

  37. Achilles, D., Silberhorn, C., Sliwa, C., Banaszek, K., Walmsley, I.A., Fitch, M.J., Jacobs, B.C., Pittman, T.B., Franson, J.D.: Photon-number-resolving detection using time-multiplexing. J. Mod. Opt. 51, 1499–1515 (2004)

    Article  ADS  MATH  Google Scholar 

  38. Lin, Q., He, B., Bergou, J.A., Ren, Y.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A 80, 042311 (2009)

    Article  ADS  Google Scholar 

  39. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New J. Phys. 8, 30 (2006)

    Article  ADS  Google Scholar 

  40. Munro, W.J., Nemoto, K., Spiller, T.P., Barrett, S.D., Kok, P., Beausoleil, R.G.: Efficient optical quantum information processing. J. Opt. B: Quantum Semiclass. Opt. 7, S135–S140 (2005)

    Article  ADS  Google Scholar 

  41. Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A 73, 052320 (2006)

    Article  ADS  Google Scholar 

  42. Yamamoto, T., Hayashi, K., Ozdemir, S.K., Koashi, M., Imoto, N.: Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace. Nat. Photon 2, 488–491 (2008)

    Article  Google Scholar 

  43. Phoenix, S.J.D.: Wave-packet evolution in the damped oscillator. Phys. Rev. A 41, 5132–5138 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  44. Rohde, P.P., Munro, W.J., Ralph, T.C., van Loock, P., Nemoto, K.: Practical effects in the preparation of cluster states using weak non-linearities. Quantum Inf. Comput. 8, 53–67 (2008)

    MathSciNet  MATH  Google Scholar 

  45. van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  46. He, B., Ren, Y.H., Bergou, J.A.: Creation of high-quality long-distance entanglement with flexible resources. Phys. Rev. A 79, 052323 (2009)

    Article  ADS  Google Scholar 

  47. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    Article  ADS  Google Scholar 

  48. Friedler, I., Petrosyan, D., Fleischhauer, M., Kurizki, G.: Long-range interactions and entanglement of slow single-photon pulses. Phys. Rev. A 72, 043803 (2005)

    Article  ADS  Google Scholar 

  49. He, B., MacRae, A., Han, Y., Lvovsky, A.I., Simon, C.: Transverse multimode effects on the performance of photon-photon gates. Phys. Rev. A 83, 022312 (2011)

    Article  ADS  Google Scholar 

  50. He, B., Lin, Q., Simon, C.: Cross-Kerr nonlinearity between continuous-mode coherent states and single photons. Phys. Rev. A 83, 053826 (2011)

    Article  ADS  Google Scholar 

  51. He, B., Scherer, A.: Continuous-mode effects and photon-photon phase gate performance. Phys. Rev. A 85, 033814 (2012)

    Article  ADS  Google Scholar 

  52. Gea-Banacloche, J.: Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets. Phys. Rev. A 81, 043823 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant No. 11074002 and No. 61275119 and also the Doctoral Foundation of the Ministry of Education of China under Grant No. 20103401110003.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng-Zheng Zhu or Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, MZ., Ye, L. Efficient entanglement purification via quantum communication bus. Quantum Inf Process 13, 1397–1412 (2014). https://doi.org/10.1007/s11128-014-0735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0735-9

Keywords

Navigation