Skip to main content
Log in

Authenticated semi-quantum key distribution protocol using Bell states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This study presents the first authenticated semi-quantum key distribution (ASQKD) protocols without using authenticated classical channels. By pre-sharing a master secret key between two communicants, a sender with advanced quantum devices can transmit a working key to a receiver, who can merely perform classical operations. The idea of ASQKD enables establishment of a key hierarchy in security systems that also eases the key management problem. The proposed protocols are free from several well-known attacks

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chinese Phys. Lett. 21(11), 2097–2100 (2004)

    Article  ADS  Google Scholar 

  4. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  5. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050–2056 (1999)

    Article  ADS  Google Scholar 

  6. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India (1984)

  8. Zhang, Z.J., Man, Z.X., Shi, S.H.: An efficient multiparty quantum key distribution scheme. Int. J. Quantum Inf. 3(3), 555–560 (2005)

    Article  MATH  Google Scholar 

  9. Chen, P., Li, Y.-S., Deng, F.-G., Long, G.-L.: Measuring-basis encrypted quantum key distribution with four-state systems. Commun. Theor. Phys. 47(1), 49–52 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  10. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78(2), 022321 (2008)

    Google Scholar 

  11. Li, X.-H., Duan, X.-J., Deng, F.-G., Zhou, H.-Y.: Error-rejecting Bennett–Brassard–Mermin quantum key distribution protocol based on linear optics over a collective-noise channel. Int. J. Quantum Inf. 8(7), 1141–1151 (2010)

    Article  MATH  Google Scholar 

  12. Li, X.-H., Zhao, B.-K., Sheng, Y.-B., Deng, F.-G., Zhou, H.-Y.: FAULT tolerant quantum key distribution based on quantum dense coding with collective noise. Int. J. Quantum. Inf. 7(8), 1479–1489 (2009)

    Article  MATH  Google Scholar 

  13. Zhao, B.-K., Sheng, Y.-B., Deng, F.-G., Zhang, F.-S., Zhou, H.-Y.: Stable and deterministic quantum key distribution based on differential phase shift. Int. J. Quantum Inf. 7(4), 739–745 (2009)

    Article  MATH  Google Scholar 

  14. Hwang, T., Hwang, C.C., Tsai, C.W.: Quantum key distribution protocol using dense coding of three-qubit W state. Eur. Phys. J. D 61(3), 785–790 (2011)

    Article  ADS  Google Scholar 

  15. Hwang, T., Lee, K.C., Li, C.M.: Provably secure three-party authenticated quantum key distribution protocols. IEEE Trans Depend Secur 4(1), 71–80 (2007)

    Article  MathSciNet  Google Scholar 

  16. Hwang, T., Tsai, C.W., Chong, S.K.: Probabilistic quantum key distribution. Quantum Inf. Comput. 11(7–8), 615–637 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Boyer, M., Kenigsberg, D., Mor, T.: Quantum key distribution with classical Bob. Phys. Rev. Lett. 99(14), 140501 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Boyer, M., Gelles, R., Kenigsberg, D., Mor, T.: Semiquantum key distribution. Phys. Rev. A 79(3), 032341 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Zou, X., Qiu, D., Li, L., Wu, L., Li, L.: Semiquantum-key distribution using less than four quantum states. Phys. Rev. A 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  20. Wang, J., Zhang, S., Zhang, Q., Tang, C. J.: Semiquantum key distribution using entangled states. Chinese Phys. Lett. 28(10), 100301 (2011)

    Google Scholar 

  21. Yang, C.-W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51(12), 3941–3950 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, J., Yang, C.-W., Tsai, C.-W., Hwang, T.: Intercept-resend attacks on semiquantum secret sharing and the improvements. Int. J. Theor. Phys. 52(1), 156–162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, C.-W., Hwang, T., Lin, T.-H.: Modification Attack on QSDC with Authentication and the Improvement. Int. J. Theor. Phys. 52(7), 2230–2234 (2013)

    Article  MathSciNet  Google Scholar 

  24. Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. Comput. 17(2), 210–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy amplification. IEEE Trans. Inf. Theory 41(6), 1915–1923 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, C.-W., Hwang, T., Luo, Y.-P.: Enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 12(1), 109–117 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Robustness of two-way quantum communication protocols against trojan horse attack. Quantum Phys. (2005) arXiv:quant-ph/0508168v1z

  28. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351(1–2), 23–25 (2006)

    Article  ADS  MATH  Google Scholar 

  29. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  30. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)

    Article  ADS  Google Scholar 

  31. Deng, F.G., Li, X.H., Zhou, H.Y., Zhang, Z.J.: Improving the security of multiparty quantum secret sharing against Trojan horse attack (vol 72, art no 044302, 2005). Phys. Rev. A 73(4), 049901 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to thank the National Science Council of the Republic of China, Taiwan for partially supporting this research in finance under the Contract No. NSC 100-2221-E-006-152-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, KF., Yang, CW., Liao, CH. et al. Authenticated semi-quantum key distribution protocol using Bell states. Quantum Inf Process 13, 1457–1465 (2014). https://doi.org/10.1007/s11128-014-0740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0740-z

Keywords

Navigation