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Quantum discord of ensemble of quantum states

Yao Yao, Jing-Zheng Huang, Xu-Bo Zou,∗ Zhen-Qiang Yin, Wei Chen, Guang-Can Guo, and Zheng-Fu Han
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, 230026, China

(Dated: August 10, 2021)

We highlight an information-theoretic meaning of quantum discord as the gap between the ac-

cessible information and the Holevo bound in the framework of ensemble of quantum states. This
complementary relationship implies that a large amount of pre-existing arguments about the evalu-
ation of quantum discord can be directly applied to the accessible information and vice versa. For
an ensemble of two pure qubit states, we show that one can evade the optimization problem with
the help of the Koashi-Winter relation. Further, for the general case (two mixed qubit states), we
recover the main results presented by Fuchs and Caves [Phys. Rev. Lett. 73, 3047 (1994)], but
totally from the perspective of quantum discord. Following this line of thought, we also investigate
the geometric discord as an indicator of quantumness of ensembles in detail. Finally, we give an
example to elucidate the difference between quantum discord and geometric discord with respect to
optimal measurement strategies.

PACS numbers: 03.67.Hk 03.67.Mn 03.65.Ud

Introduction. Since its introduction in 2001, the con-
cept of quantum discord [1, 2] has been gradually rec-
ognized and used as an indicator of the quantumness of
composite quantum systems. Most recently, it is arousing
increasing interest in its quantification and applications
(for a recent review see [3] and references therein). Quan-
tum discord originates from the inequivalence of two clas-
sically identical expressions of mutual information in the
quantum realm. For a composite bipartite system ρab,
the quantum mutual information is defined as

I(ρab) := S(ρa) + S(ρb)− S(ρab), (1)

where S(ρ) = −trρ log2 ρ is the von Neumann entropy,
and ρa(b) = trb(a)ρ

ab denote the reduced density operator
of subsystem A(B). On the other hand, consider perform-
ing a general measurement {Πb

k} on subsystem B. An al-
ternative version of the mutual information, proposed by
Henderson and Vedral [2], can be regarded as a measure
to quantify the purely classical part of correlations

JB(ρ
ab) : = S(ρa)− S(ρab|{Πb

k}),

= S(ρa)− min
{Πb

k
}

∑

k

pkS(ρ
a
k), (2)

with pk = trΠb
kρ

ab and ρak = trbΠ
b
kρ

ab/pk. The informa-
tion discrepancy between these two quantities is defined
as the so called quantum discord

DB(ρ
ab) : = I(ρab)− JB(ρ

ab),

= S(ρb)− S(ρab) + min
{Πb

k
}

∑

k

pkS(ρ
a
k). (3)

Note that the optimization problem is involved in the
definition, so up to now we have only obtained analytical
results in some limited cases [4–6].

∗Electronic address: xbz@ustc.edu.cn

In this paper, we highlight an information-theoretic
meaning of quantum discord as the information gap be-
tween the accessible information and the Holevo bound

in the framework of ensemble of quantum states. The
implication of this complementary relationship is trans-
parent and remarkable: a great deal of pre-established
arguments about the accessible information can be di-
rectly applied to the (analytical) evaluation of quantum
discord, even if there was no formal definition of quan-
tum discord at that time. As an accompaniment, we also
investigate the geometric discord as a figure of merit for
characterizing quantum correlations of ensembles follow-
ing the same line of thought. We hope that this work can
enlarge the scope of (analytical) evaluation of quantum
discord and shed some new light on the relation between
quantum discord and quantum communication.
Quantum discord as information gap. In the con-

text of quantum ensembles, even a system so simple as
one consisting of only two nonorthogonal states can be
surprisingly rich in physics [7]. Now it has been real-
ized that the quantumness of quantum ensembles can not
be accounted for by considering only one specific physi-
cal quantity. Therefore, a large amount of investigations
have been devoted to the study of this topic and sev-
eral proposals have been made about how to classify and
quantify the quantumness of ensembles [8–17]. Here we
reveal a new information-theoretic meaning of quantum
discord as the discrepancy between the accessible infor-

mation and the Holevo bound in the framework of en-
semble of quantum states. Assume that Alice prepares a
quantum ensemble E = {λi, ρi}, and then Bob performs
a POVMmeasurementM = {Mj}. The overall ensemble
of states is ρ =

∑
i λiρi. The celebrated Holevo theorem

declares that [18]

H(A : B) ≤ χ(E) := S(ρ)−
∑

i

λiS(ρi), (4)

where the Shannon mutual information H(A : B) rep-
resents the classical mutual information between Ailce’s
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preparation and Bob’s measurement outcome under the
measurement M , S(ρ) = −trρ log2 ρ is the von Neumann
entropy and χ(E) is the Holevo bound.
However, we observe that the quantum ensemble can

be rephrased as a classical-quantum state

̺E =
∑

i

λi|i〉〈i| ⊗ ρbi , (5)

Here {|i〉} is an orthonormal basis of subsystem A. With
the help of the relation [19]

S

(
∑

i

λi|i〉〈i| ⊗ ρbi

)
= H(λi) +

∑

i

λiS(ρ
b
i), (6)

It turns out that the quantum mutual information of ̺(E)
is equivalent to the Holevo bound

I[̺E ] = S(ρb)−
∑

i

λiS(ρ
b
i) = χ(E), (7)

On the other hand, the (local) accessible information is
defined as the maximum amount of classical mutual in-
formation that Bob can extract by measurement M

Iacc(̺E) = max
M

I[M(̺E)] = max
M

H(A : B), (8)

From Eqs. (7) and (8), it can be seen clearly that the
information difference between the Holevo bound and
accessible information is exactly the quantum discord,
due to the original definition made by Olivier and Zurek
[1]

I[̺E ]−max
M

I[M(̺E)] = χ(E)− Iacc(̺E) = D(̺E). (9)

This remarkable relationship implies that given a quan-
tum ensemble, quantum discord and the accessible infor-
mation are complementary to each other, or more impor-
tantly, they share the same optimal measurement strat-
egy. The above observation further suggests that a large
amount of pre-existing arguments [20–24] (in fact most
of which focus on seeking optimal measurements) about
the accessible information can be directly applied to the
evaluation of quantum discord, even if at that time there
was no formal definition of quantum discord, or in other
words, their mathematical difficulties are equivalent.
In fact, this interpretation of quantum discord has al-

ready been noticed by Luo et al. [15] (only a few exam-
ples were reported there). Nevertheless, this important
issue has never been further explored in the study of more
general cases till now. In the following, we investigate
the quantum ensembles totally from the perspective of
quantum discord and revisit (and deepen) the previous
results about the accessible information. Since here we
prefer to obtain analytical results, we concentrate on an
ensemble of two states on two-dimensional Hilbert spaces
(i.e., qubit), the same as what was displayed in Ref. [8].
However, this idea can be extended to ensembles of more
than two states and in high dimensions.

Accessible information for ensemble of pure

states. As an important application, we first demon-
strate that for an ensemble of two pure states |φ0〉 and
|φ1〉, we can evade the optimization problem with the
help of the Koashi-Winter relation [25], to evaluate the
quantum discord of the bipartite state associated with
the ensemble. Here the overall state can be written as

̺ab = λ0|0〉〈0| ⊗ |φ0〉〈φ0|+ λ1|1〉〈1| ⊗ |φ1〉〈φ1|, (10)

which can be purified to a tripartite pure state (qubit C
is an auxiliary system)

|Φ〉 =
√
λ0|0〉a|φ0〉b|0〉c +

√
λ1|1〉a|φ1〉b|1〉c, (11)

where ̺ab = trc|Φ〉〈Φ| and ̺ac = trb|Φ〉〈Φ|.
The Koashi-Winter relation tells us that

D←(̺ab) = E(̺ac)− Sa|b, (12)

whereD←(̺ab) denotes the quantum discord of ̺AB with
the subsystem B measured, E(̺ac) is the entanglement
of formation of ̺ac, and Sa|b = S(̺ab)−S(̺b). Note that
E(̺ac) is a monotonic function of concurrence C(̺ac)

E(̺ac) = h

(
1 +

√
1− C(̺ac)2

2

)
, (13)

where h(x) = −x log2 x− (1−x) log2(1−x) is the binary
entropy function. In view of the density matrix of ̺ac,
one can easily obtain the concurrence

C(̺ac) = 2
√
λ0λ1〈φ0|φ1〉, (14)

Besides, for the density matrix ̺ab we have

S(̺ab) = H({λi}) +
∑

i=0,1

λiS(ρi) = h(λ0), (15)

S(̺b) = −λ± log2 λ±, (16)

with the eigenvalues of ̺B = λ0ρ0 + λ1ρ1 being λ± =
1
2 (1 ±

√
1− 4λ0λ1(1 − 〈φ0|φ1〉2)). Hence, the quantum

discord of this ensemble is analytically achieved

D←(̺ab) = h

(
1 +

√
1− C(̺ac)2

2

)
+ h(λ+)− h(λ0).

(17)

For the case λ0 = λ1 = 1
2 , we easily recover the results

presented in Ref. [7, 26], but totally from a different
viewpoint. Note that Fuchs’s quantumness measure [7]
is naturally compatible with the definition of quantum
discord.
In addition to these technical points, we are more con-

cerned with the optimal measurement strategy for quan-
tum discord. Later, we restrict our considerations to the
more general case of two mixed qubit states.
Optimal strategy for quantum discord. In the

Bloch representation, the two mixed states can be written
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as ρ0 = 1
2 (1+~a·~σ) and ρ1 = 1

2 (1+
~b·~σ), where a = |~a| ≤ 1,

b = |~b| ≤ 1 and ~σ = (σx, σy, σz) being the Pauli spin
vector. To go through all possible one-qubit projective
measurements, we adopt the projectors Π± = 1

2 (I±~n ·~σ)
with n = |~n| = 1.
Accordingly, the post-measurement states ρa± =

trbΠ±̺EΠ±/p± are

ρa+ =

(
λ0

1+~a·~n
1+~c·~n 0

0 λ1
1+~b·~n
1+~c·~n

)
, (18)

ρa− =

(
λ0

1−~a·~n
1−~c·~n 0

0 λ1
1−~b·~n
1−~c·~n

)
, (19)

where we introduce ~c = λ0~a + λ1
~b. The corresponding

probabilities p± = trΠ±̺(E)Π± are given by

p± =
1

2
λ0(1± ~a · ~n) +

1

2
λ1(1±~b · ~n),

=
1

2
(1 ± ~c · ~n), (20)

The key point of evaluating quantum discord is to
search the minimum value of the conditional quantum
entropy

S(~n) = S(A|Π) = p+S(ρ
A
+) + p−S(ρ

A
−), (21)

The optimal projector for Eq. (21) can be found by vary-
ing it with respect to all unit vectors ~n, that is, by setting
δS(~n) = 0. The resulting condition for the optimal ~n is

[
(λ0 log2 ϑ0)~a+ (λ1 log2 ϑ1)~b

]
· δ~n = 0, (22)

where we define

ϑ0 =
(1 + ~a · ~n)(1− ~c · ~n)

(1− ~a · ~n)(1 + ~c · ~n)
,

ϑ1 =
(1 +~b · ~n)(1− ~c · ~n)

(1−~b · ~n)(1 + ~c · ~n)
, (23)

Here we notice that an infinitesimal variation of the unit

vector is an infinitesimal rotation, i.e. δ~n = ~ǫ× ~n, where
~ǫ is an arbitrary infinitesimal vector. This indicates that
δ~n is perpendicular to ~n. Therefore, if we divide a vector
~a into two parts ~a⊥ and ~a‖ (here the subscripts ⊥ and ‖

are with respect to ~n), only the ~a⊥ (~b⊥) part can survive
in Eq. (22). Hence, Eq. (22) becomes

[
(λ0 log2 ϑ0)~a⊥ + (λ1 log2 ϑ1)~b⊥

]
· δ~n = 0, (24)

where ~a⊥ = ~a − (~a · ~n)~n and ~b⊥ = ~b − (~b · ~n)~n. This
equation further suggests that our final condition is

(λ0 log2 ϑ0)~a⊥ + (λ1 log2 ϑ1)~b⊥ = ~0, (25)

This is exactly the same condition that should be satisfied
by the optimal ~n associated with the accessible informa-
tion [8] (see also [9]). Moreover, if we let

{
ϑ0 = ϑ−11 ,

λ0~a⊥ + λ1
~b⊥ = ~0.

(26)

one can precisely recover the three cases raised in Ref.
[8] which can be analytically solved, and this derivation
in turn enriches the instance of analytical exploration of
quantum discord.
Optimal strategy for geometric discord. Follow-

ing the above line of thought, we turn to investigate
the optimal measurement strategy for geometric discord,
which was introduced as a geometrical way of quantifying
quantum discord [27]

DG(ρ) := min
χ∈Ω

‖ρab − χab‖2, (27)

where Ω denotes the set of (B-side) zero-discord states
and ‖ρ − χ‖2 = Tr(ρ − χ)2 is the square of Hilbert-
Schmidt norm. It is worth mentioning that, Luo and
Fu presented a simplified but equivalent version of the
geometric discord [28]

DG(ρ
ab) = min

Πb

||ρab −Πb(ρab)||2, (28)

where the minimum is over all von Neumann measure-
ments Πb = {Πb

k} on subsystem B.
Suppose Π = {Πi} is a complete set of orthogonal pro-

jectors and ρ′ = Π(ρ) =
∑

i ΠiρΠi, then we have the
identity [19]

−trρ log2 ρ
′ = S(ρ′), (29)

Therefore, Eq. (28) can be further simplified to

DG(ρ) = tr(ρ2)−max
Πb

tr[(Πb(ρ))2], (30)

which can be viewed as the minimum purity deficit.
Recall that the overall state of our ensemble is ̺E =
λ0|0〉〈0| ⊗ ρ0 + λ1|1〉〈1| ⊗ ρ1, and the first term of Eq.
(30) can be easily obtained

tr(̺2E ) =
1

2

[
λ2
0(1 + a2) + λ2

1(1 + b2)
]
, (31)

To arrive at the maximum valve of the second term, we
also need to optimize over all von Neumann measure-
ments Πb = {Π±} as we did in the previous section. We
observe that

[Πb(̺E)]
2 =

[
∑

i=±

Πi̺EΠi

]2
,

= λ2
0|0〉〈0| ⊗ (Π+ρ0Π+)

2

+ λ2
1|1〉〈1| ⊗ (Π+ρ1Π+)

2

+ λ2
0|0〉〈0| ⊗ (Π−ρ0Π−)

2

+ λ2
1|1〉〈1| ⊗ (Π−ρ1Π−)

2, (32)
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Note that we have the identities

Π±ρ0Π± = (1± ~a · ~n)Π±,

Π±ρ1Π± = (1±~b · ~n)Π±, (33)

Thus, we have

tr[(Πb(̺E))
2] =

1

2
λ2
0[1 + (~a · ~n)2)]

+
1

2
λ2
1[1 + (~b · ~n)2)], (34)

By setting δDG(~n) = 0, the condition for optimal ~n is

[
λ2
0(~a · ~n)~a+ λ2

1(
~b · ~n)~b

]
· δ~n = 0, (35)

The same reasoning (with respect to Eq. (22)) leads us
to

λ2
0(~a · ~n)~a⊥ + λ2

1(
~b · ~n)~b⊥ = ~0, (36)

To satisfy Eq. (36), two possible choices may be

{
~a · ~n = ±~b · ~n,

λ2
0~a⊥ ± λ2

1
~b⊥ = ~0.

(37)

Later we will show that in some analytical cases the in-
terchange between this two choices makes the optimal
strategy of geometric discord very different form that of
original discord.
An explicit example and comparison. Finally,

to illustrate the above arguments about measurement
strategies, we focus on a specified ensemble of two pure
states with equal probabilities (i.e., λ0 = λ1 = 1

2 ). Here
we define

|φ0〉 = cos
θ

2
|0〉+ sin

θ

2
|1〉,

|φ1〉 = cos
θ

2
|0〉 − sin

θ

2
|1〉, (38)

where 〈φ0|φ1〉 = cos θ and the corresponding Bloch vec-

tors are ~a = (sin θ, 0, cos θ), ~b = (− sin θ, 0, cos θ) respec-
tively. From Eq. (26), the requirement of optimal ~n for

quantum discord is equivalent to ~n ∝ ~a−~b, which means
that the direction of ~n is the bisectrix of the angle be-

tween ~a and ~b. More precisely, Π = { 1
2 (I ± σx)} is the

optimal observable for quantum discord. Actually, in a
more visualizable way, we can plot the (non-optimized)

quantum discord D̃(θ, δ) as a function of θ and δ (here
~n = (cos δ, 0, sin δ)), employing the algorithm proposed
in our previous work [29]. Form Figure 1, it can be easily
seen that we can choose δ = 0 or π to achieve quantum
discord, for every value of θ, in other words, irrespec-
tive of the value of θ, which is consistent with the above
analysis. Consequently, the quantum discord reads

D(̺E) = h

(
1 + sin θ

2

)
+ h

(
1 + cos θ

2

)
− 1, (39)

FIG. 1: (Color online) The rough quantum discord D̃(θ, δ)
(before optimization) as a function of θ and δ. Here the Bloch
vector of von Neumann measurement is ~n = (cos δ, 0, sin δ).

On the other hand, one can analytically obtain the
expression of the geometric discord from Eqs. (31) and
(34) as

DG(̺E) =
1

4
−max

δ

1

4
(sin2 θ + cos 2θ sin2 δ),

=

{
1
4 sin

2 θ, if θ ∈ [0, π
4 ) ∪ (3π4 , π]

1
4 cos

2 θ, if θ ∈ [π4 ,
3π
4 ]

=
1

8
(1 − | cos 2θ|). (40)

The calculation implies that when θ ∈ [0, π
4 ) ∪ (3π4 , π],

the optimal measurement strategy for geometric discord
is ~n = (0, 0, 1); however, when θ ∈ [π4 ,

3π
4 ], the relevant

optimal measurement is ~n = (1, 0, 0). In sharp contrast
to the situation of quantum discord, the optimal strategy
of geometric discord depends on the angle between the
two pure states. Moreover, the transition of this two
kinds of optimal measurements just corresponds to the
two possible choices in Eq. (37).
As a comparison, we plot quantum discord and geo-

metric discord for the ensembles together in Figure 2.
We observe that geometric discord behaves monotoni-
cally with respect to quantum discord and it indicates
that in this case geometric discord can also be viewed
as a faithful measure of quantumness of quantum ensem-
bles, in spite of the transition of the optimal measurement
strategies.
Conclusion. We highlight a significant information-

theoretic meaning of quantum discord as the gap between
the accessible information and the Holevo bound in the
context of quantum ensembles. This remarkable relation-
ship indicates that quantum discord and the accessible in-
formation share the same optimal measurement strategy
and a large amount of pre-existing arguments about the
evaluation of quantum discord can be directly applied to
the accessible information and vice versa. We have an-
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FIG. 2: (Color online) The comparison between quantum dis-
cord (purple solid line) and geometric discord (green dashed
line).

alytically obtained the optimal measurement strategies
of quantum discord and geometric discord for an ensem-

ble of two mixed (two-dimensional) states, which easily
recover the results in Ref. [8]. We emphasize that this
interpretation can be generalized to more general cases.
For instance, our analysis of geometric discord can be
directly extended to ensembles of more that two states.
These results build a new bridge between quantum dis-
cord and quantum communication and we hope that our
attempt can attract more attention to this direction and
enlarge the scope of analytical evaluation of quantum dis-
cord.
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