Skip to main content
Log in

Controlled remote state preparation protocols via AKLT states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we proposed two controlled remote state preparation of an arbitrary single-qubit state schemes one for deterministic controlled remote state preparation the other for probabilistic controlled-joint remote state preparation with 2/3 probability. Both of them used the Affleck–Kennedy–Lieb–Tasaki (AKLT) state which consisted of bulk spin-1’s and two spin-1\(/\)2’s at the ends. Up to now, no RSP protocols using AKLT gapped ground states as a shared quantum resource had been presented thus far and Fan et al. showed the other AKLT property was that if we performed a Bell measurement on bulk, then a maximally entangled state would be shared by two ends. We utilized these properties to develop our controlled protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Shor, P.W.: Quantum information theory. IEEE Trans. Inf. Theory 44(6), 2724–2742 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  3. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87(7), 077902 (2001)

    Article  ADS  Google Scholar 

  5. Dai, H.Y., Chen, P.X., Liang, L.M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285–288 (2006)

    Article  ADS  Google Scholar 

  6. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., Zhang, Z.J.: Controlled remote state preparation. Commun. Theor. Phys. (Beijing, China) 52(2), 235–240 (2009)

    Article  ADS  MATH  Google Scholar 

  7. Guan, X.W., Chen, X.B., Yang, Y.X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575–3586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wang, D., Ye, L.: Multi party-controlled joint remote preparation. Quantum Inf. process. 12, 3223–3237 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Liu, J.M., Han, J.R., Wang, Y.Z.: Multiparticle generalization of remote state preparation. Commun. Theor. Phys. 42(2), 211–214 (2004)

    Article  Google Scholar 

  10. Ma, P.C., Zhan, Y.B.: Scheme for probabilistic remotely preparing a multi-particle entangled GHZ state. Chin. Phys. B 17(2), 445–450 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ma, P.C., Zhan, Y.B.: Scheme for remotely preparing a four-particle entangled cluster-type state. Opt. Commun. 283, 2640–2643 (2010)

    Article  ADS  Google Scholar 

  12. Nguyen, B.A., Cao, T.B., Nung, V.D., Kim, J.: Remote state preparation with unit success probability. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2, 035009 (2011)

    ADS  Google Scholar 

  13. Nguyen, B.A.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113–4117 (2010)

    Article  Google Scholar 

  14. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Valence bond ground states in isotropic quantum antiferromagnets. Commun. Math. Phys 115, 477–528 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  15. Chen, X., Zeng, B., Gu, Z.C., Yoshida, B., Chuang, I.L.: Gapped two-body hamiltonian whose unique ground state is universal for one-way quantum computation. Phys. Rev. Lett. 102, 220501 (2009)

    Article  ADS  Google Scholar 

  16. Darmawan, A.S., Bartlett, S.D.: Optical spin-1 chain and its use as a quantum-computational wire. Phys. Rev. A 82, 012328 (2010)

    Article  ADS  Google Scholar 

  17. Kaltenbaek, R., Lavoie, J., Zeng, B., Bartlett, S.D., Resch, K.J.: Optical one-way quantum computing with a simulated valence-bond solid. Nat. Phys. lett. 6, 850–854 (2010)

    Article  Google Scholar 

  18. Coello, J.G., Bayat, A., Bose, S., Jefferson, J.H., Creffield, C.E.: Spin filtering and entanglement swapping through coherent evolution of a single quantum dot. Phys. Rev. Lett. 105, 080502 (2010)

    Article  ADS  Google Scholar 

  19. Affleck, I., Kennedy, T., Lieb, E.H., Tasaki, H.: Rigorous results on valence-bond ground states in antiferromagnets. Phys. Rev. Lett. 59(7), 799–802 (1987)

    Article  ADS  Google Scholar 

  20. Fan, H., Korepin, V., Roychowdhury, V.: Entanglement in a valence-bond solid state. Phys. Rev. Lett. 93, 227203 (2004)

    Article  ADS  Google Scholar 

  21. Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52, 3075–3085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, Q.Q., Xia, Y., Song, J., Nguyen, B.A.: Joint remote state preparation of a W-type state via W-type states. Phys. Lett. A 374, 4483–4487 (2010)

    Article  ADS  MATH  Google Scholar 

  24. Nguyen, B.A., Cao, T.B., Nung, V.D.: Deterministic joint remote state preparation. Phys. Lett. A 375, 3570–3573 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen, Q.Q., Xia, Y., Nguyen, B.A.: Flexible deterministic joint remote state preparation with a passive receiver. Phys. Scr. 87, 025005 (2013)

    Article  ADS  MATH  Google Scholar 

  26. Zhan, Y.B., Fu, H., Li, X.W., Ma, P.C.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theor. Phys. 52, 2615–2622 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Comput. Quantum Inf. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

Download references

Acknowledgments

This research is supported partially by the National Science Council, Taiwan, R.O.C., under the Contract No. NSC 100-2221-E-006-152-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzonelih Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L.L., Hwang, T. Controlled remote state preparation protocols via AKLT states. Quantum Inf Process 13, 1639–1650 (2014). https://doi.org/10.1007/s11128-014-0757-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0757-3

Keywords

Navigation