Skip to main content
Log in

Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Tripartite remote sharing of any single-qubit operation with two asymmetric three-qubit W states is amply treated. Five schemes are put forward with the W states in five different entanglement structures corresponding to five different distributions of two identical qubit trios in three locations. For all schemes, two features about the security and the agent symmetry are analyzed and confirmed. Moreover, resource consumption, necessary-operation complexity, success probability and efficiency are also worked out and compared mutually. For all schemes, quantum resource consumption and necessary-operation complexity are same. The last scheme needs to cost two additional classical bits than the former four schemes. Nonetheless, the last scheme is deterministic and has the highest efficiency in contrast to the other four probabilistic schemes with lower efficiencies. Through some analyses, it is found that both success probability and intrinsic efficiency of each scheme are completely determined by the corresponding entanglement structure of the two W states. The underlying physics of this feature is revealed. In addition, the implementation feasibility of all the schemes is analyzed and thus confirmed according to the current experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Gottesman, D., Chuang, I.: Demonstrating the viability of universal quantum computation using tele-portation and single-qubit operations. Nature 402, 390 (1999)

    Article  ADS  Google Scholar 

  3. Zhang, Z.J., Liu, Y.M., Wang, D.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  MATH  Google Scholar 

  4. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  5. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77, 032321 (2008)

    Article  ADS  Google Scholar 

  6. Wang, M.Y., Yan, F.L.: Chain teleportation via partially entangled states. Eur. Phys. J. D 54, 111 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  7. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  8. Furusawa, A., et al.: Unconditional quantum teleportation. Science 282, 706 (1998)

    Article  ADS  Google Scholar 

  9. Hillery, M., Bǔzk, V.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  10. Paul, N., Menon, J.V., Karumanchi, S., Muralidharan, S., Panigrahi, P.K.: Quantum tasks using six qubit cluster states. Quantum Inf. Process. 10, 619 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Choudhury, S., Muralidharan, S., Panigrahi, P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42, 115303 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Deng, F.G., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  13. Yan, F.L., Wang, D.: Probabilistic and controlled teleportation of unknown quantum states. Phys. Lett. A 316, 297 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Muralidharan, S., Panigrahi, P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  15. Muralidharan, S., Jain, S., Panigrahi, P.K.: Splitting of quantum information using N-qubit linear cluster states. Opt. Commun. 284, 1082 (2011)

    Article  ADS  Google Scholar 

  16. Prasath, E.S., et al.: Multipartite entangled magnon states as quantum communication channels. Quantum Inf. Process. 11, 397 (2012)

    Article  MathSciNet  Google Scholar 

  17. Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  18. Huelga, S.F., et al.: Quantum remote control: teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Huelga, S.F., et al.: Remote control of restricted sets of operations: teleportation of angles. Phys. Rev. A 65, 042316 (2002)

    Article  ADS  Google Scholar 

  20. Wang, A.M., Zhao, N.B.: Hybrid protocol of remote implementations of quantum operations. Phys. Rev. A 76, 062317 (2007)

    Article  ADS  Google Scholar 

  21. Wang, A.M., Zhao, B.: Local implementation of nonlocal operations with block forms. Phys. Rev. A 79, 014305 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    Article  ADS  Google Scholar 

  23. Liu, D.C., et al.: Generalized three-party qubit operation sharing. Int. J. Quantum Inf. 11, 1350011 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ye, B.L., et al.: Remotely sharing single-qubit operation with five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    Article  ADS  Google Scholar 

  25. Ji, Q.B., et al.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Ji, Q.B., et al.: Single-qubit operation sharing with Bell and W product states. Commun. Theor. Phys. 60, 165 (2013)

    Article  ADS  Google Scholar 

  27. Wang, S.F., et al.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Liu, D.C., et al.: Shared quantum control via sharing operation on remote single qutrit. Quantum Inf. Process. 12, 3527 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Xing H., et al.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. doi:10.1007/s11128-014-0750-x (2014)

  30. Dür, W., et al.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. Shi, B.S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A 296, 161 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  33. Li, L.Z., Qiu, D.W.: The states of W-class as shared resources for perfect teleportation and super- dense coding. J. Phys. A Math. Theor. 40, 10871 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Liu, Y.M., et al.: Tripartition of arbitrary single-qubit quantum information by using asymmetric four-qubit W state. Int. J. Quantum Inf. 7, 349 (2009)

    Article  MATH  Google Scholar 

  35. Joo, J., et al.: Quantum teleportation via a W state. New J. Phys. 5, 136 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  36. Zhan, Y.B.: Teleportation of N-particle entangled W state via entanglement swapping. Chin. Phys. 13, 1801 (2004)

    Article  ADS  Google Scholar 

  37. Zuo, X.Q., et al.: Minimal classical communication cost and measurement complexity in splitting two-qubit quantum information via asymmetric W states. Int. J. Quantum Inf. 6, 1245 (2008)

    Article  MATH  Google Scholar 

  38. Zuo, X.Q., et al.: Bisplitting an arbitrary N-qubit state with a class of asymmetric three-qubit W states. Int. J. Theor. Phys. 48, 1950 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Z.J., et al.: Multiparty quantum secret sharing of secure direct communication. Phys. Lett. A 342, 60 (2005)

    Article  ADS  MATH  Google Scholar 

  40. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

  41. Deng, F.G., et al.: Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys. Lett. A 337, 329 (2005)

    Article  ADS  MATH  Google Scholar 

  42. Han, L.F., Liu, Y.M., Zhang, Z.J.: Improving the security of a quantum secret sharing protocol between multiparty and multiparty without entanglement. Phys. Lett. A 361, 24 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Han, L.F., et al.: Efficient multiparty-to-multiparty quantum secret sharing via continuous variable operations. Chin. Phys. Lett. 24, 3312 (2007)

    Article  ADS  Google Scholar 

  44. Han, L.F., et al.: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 2690 (2008)

    Article  ADS  Google Scholar 

  45. Long, G.L., Liu, X.S.: Theoretical efficient high capacity quantum key distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  46. Xiao, L., Long, G.L., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  47. Chen, X., et al.: Quantum state sharing of an arbitrary three-qubit state by using three sets of W-class states. Quantum Inf. Process. 12, 2405 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Gao, Y.X., et al.: Preparation of Greenberger–Horne–Zeilinger and W states on a one-dimensional Ising chain by global control. Phys. Rev. A 87, 032335 (2013)

    Article  ADS  Google Scholar 

  49. Sweke, R., Sinayskiy, I., Petruccione, F.: Dissipative preparation of large W states in optical cavities. Phys. Rev. A 87, 042323 (2013)

    Article  ADS  Google Scholar 

  50. Solano, E., et al.: Reliable teleportation in trapped ions. Eur. Phys. J. D 13, 121 (2001)

    Article  ADS  Google Scholar 

  51. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  52. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  53. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

  54. Ikram, M., Zhu, S.Y., Zubairy, M.S.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  55. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant Nos. 11375011 and 11372122, the Natural Science Foundation of Anhui province under Grant No. 1408085MA12 and the 211 Project of Anhui University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanjun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Q., Liu, Y., Xie, C. et al. Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf Process 13, 1659–1676 (2014). https://doi.org/10.1007/s11128-014-0759-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0759-1

Keywords

Navigation