Skip to main content
Log in

Propagation of nonclassical correlations through one-dimensional quantum networks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate transfer of nonclassical correlations through one-dimensional quantum networks for several schemes by employing concurrence and local quantum uncertainty as the measures and the extended Werner-like states as the initial resources. The exact dynamics of quantum correlations are derived, and the differences of dynamics between concurrence and local quantum uncertainty are analyzed. Besides, the influences of node number and initial parameters on the generation of quantum correlations between the two end nodes are discussed. Moreover, we explore the effects of duplex encodings and double channels on distribution of quantum correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, England (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  7. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  9. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  10. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  12. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  13. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  14. Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  Google Scholar 

  15. Chuan, T.K., Maillard, J., Modi, K., Paterek, T., Paternostro, M., Piani, M.: Quantum discord bounds the amount of distributed entanglement. Phys. Rev. Lett. 109, 070501 (2012)

    Article  ADS  Google Scholar 

  16. Kay, A.: Using separable Bell-diagonal states to distribute entanglement. Phys. Rev. Lett. 109, 080503 (2012)

    Article  ADS  Google Scholar 

  17. Merali, Z.: Quantum computing: the power of discord. Nature 474, 24 (2011)

    Article  ADS  Google Scholar 

  18. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  19. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  20. Giorda, P., Paris, M.G.A.: Gaussian quantum discord. Phys. Rev. Lett. 105, 020503 (2010)

    Article  ADS  Google Scholar 

  21. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  22. Wang, S., Li, H., Lu, X., Long, G.-L.: Closed form of local quantum uncertainty and a sudden change of quantum correlations. arXiv:1307.0576v2

  23. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. USA 49, 910 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91, 180403 (2003)

    Article  ADS  Google Scholar 

  25. Luo, S., Zhang, Q.: Informational distance on quantum-state space. Phys. Rev. A 69, 032106 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  26. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum metrology. Phys. Rev. Lett. 96, 010401 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  27. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  28. Kimble, H.J.: The quantum internet. Nature 453, 1023 (2008)

    Article  ADS  Google Scholar 

  29. Duan, L.M., Monroe, C.: Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209 (2010)

  30. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  31. Pellizzari, T.: Quantum networking with optical fibres. Phys. Rev. Lett. 79, 5242 (1997)

    Article  ADS  Google Scholar 

  32. Serafini, A., Mancini, S., Bose, S.: Distributed quantum computation via optical fibers. Phys. Rev. Lett. 96, 010503 (2006)

    Article  ADS  Google Scholar 

  33. Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  34. Duan, L.-M., Lukin, M., Cirac, J.I., Zoller, P.: Nature 414(6862), 413 (2001)

    Article  ADS  Google Scholar 

  35. Chou, C.-W., Laurat, J., Deng, H., Choi, K.S., De Riedmatten, H., Felinto, D., Kimble, H.J.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316(5829), 1316 (2007)

    Article  ADS  Google Scholar 

  36. Ritter, S., Nölleke, C., Hahn, C., Reiserer, A., Neuzner, A., Uphoff, M., Mücke, M., Figueroa, E., Bochmann, J., Rempe, G.: An elementary quantum network of single atoms in optical cavities. Nature 484, 195 (2012)

    Article  ADS  Google Scholar 

  37. Borneman, T.W., Granade, C.E., Cory, D.G.: Parallel information transfer in a multinode quantum information processor. Phys. Rev. Lett. 108, 140502 (2012)

    Article  ADS  Google Scholar 

  38. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  39. Angelakis, D.G., Santos, M.F., Bose, S.: Photon-blockade-induced Mott transitions and \(XY\) spin models in coupled cavity arrays. Phys. Rev. A 76, 031805 (2007)

    Article  ADS  Google Scholar 

  40. Bose, S., Angelakis, D.G., Burgarth, D.: Transfer of a polaritonic qubit through a coupled cavity array. J. Mod. Opt. 54, 2307 (2007)

  41. Hu, Z.-D., Zhang, Y.-Q., Xu, J.-B.: Quantum communication through open-ended quantum networks. J. Phys. A : Math. Theor. 44, 425303 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  43. Campbell, S., Apollaro, T.J.G., Di Franco, C., Banchi, L., Cuccoli, A., Vaia, R., Plastina, F., Paternostro, M.: Propagation of nonclassical correlations across a quantum spin chain. Phys. Rev. A 84, 052316 (2011)

    Article  ADS  Google Scholar 

  44. Yu, T., Eberly, J.H.: Science 323(5914), 598 (2009)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant No. 11274274 and No. 11247308) and the Fundamental Research Funds for the Central Universities (Grant No. JUSRP11405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Da Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, ZD., Zhang, Y. & Zhang, YQ. Propagation of nonclassical correlations through one-dimensional quantum networks. Quantum Inf Process 13, 1841–1855 (2014). https://doi.org/10.1007/s11128-014-0776-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0776-0

Keywords

Navigation