Skip to main content
Log in

Two-party quantum key agreement with four-qubit cluster states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Based on four-qubit cluster states, we present a two-party quantum key agreement (QKA) scheme using unitary operations. In this scheme, two participants perform the unitary operation on the different photon of the same cluster state, which guarantees that each party contributes equally to the agreement key. By measuring each cluster state and decoding, these two participants can generate a four-bit classical key without the exchange of classical bits between them. Compared with other existed two-party QKA protocols, our scheme is efficient. Security analysis shows that our protocol is secure against both participant and outsider attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal, pp. 175–179. Bangalore (1984)

  2. Brandt, H.E.: Unambiguous state discrimination in quantum key distribution. Quantum Inf. Process. 4, 387–398 (2005)

  3. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: On the information-splitting essence of two types of quantum key distribution protocols. Phys. Lett. A 355, 172–175 (2006)

    Article  ADS  MATH  Google Scholar 

  4. Jackson, D.J., Hockney, G.M.: Securing QKD links in the full Hilbert space. Quantum Inf. Process. 4, 387–398 (2005)

    Article  MathSciNet  Google Scholar 

  5. Liu, B., Gao, F., Wen, Q.Y.: Single-photon multiparty quantum cryptographic protocols with collective detection. IEEE J. Quantum Electron. 47, 1383–1390 (2011)

    Article  ADS  Google Scholar 

  6. El Allati, A., El Baz, M., Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 589–602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hillery, M., Buzěk, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Cleve, R., Gottesman, D., Lo, H.K.: Howto share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  9. Gao, F., Qin, S.J., Wen, Q.Y.: A simple participant attack on the Bradler–Dusek protocol. Quantum Inf. Comput. 7, 329–334 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery–Buzek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  11. Yang, Y., Wang, Y., Chai, H., Teng, Y., Zhang, H.: Member expansion in quantum (t, n) threshold secret sharing schemes. Opt. Commun. 284, 3479–3482 (2011)

    Article  ADS  Google Scholar 

  12. Shi, R.H., Zhong, H.: Multiparty quantum secret sharing with the pure entangled two-photon states. Quantum Inf. Process. 11, 161–169 (2012)

    Article  MathSciNet  Google Scholar 

  13. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  14. Deng, F., Long, G., Liu, X.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  15. Shen, D.S., Ma, W.P., Yin, X.R., Li, X.P.: Quantum dialogue with authentication based on Bell states. Int. J. Theor. Phys. 52(6), 1825–1835 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192 (2010)

    Article  ADS  Google Scholar 

  17. Yin, X.R., Ma, W.P., Liu, W.Y., Shen, D.S.: Efficient bidirectional quantum secure communication with two-photon entanglement. Quantum Inf. Process. 12(9), 3903–3102 (2013)

    Article  MathSciNet  Google Scholar 

  18. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  Google Scholar 

  19. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. In: Proceedings of the 14th Information Security Conference (ISC 2004), pp. 236–242. National Taiwan University of Science and Technology, Taipei 10–11 June (2004)

  20. Tsai, C.W., Hwang, T.: On “quantum key agreement protocol”. Technical Report, C-S-I-E, NCKU, Taiwan. R.O.C (2009)

  21. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on “quantum key agreement protocol with maximally entangled states”. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference (CISC 2010), pp. 210–213. National Chiao Tung University, Hsinchu, 27–28 May (2010)

  23. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  24. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Liu, B., Gao, F., Wei, H., Wen, Q.Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Sun, Z.W., Zhang, C., Wang, B., Li, Q., Long, D.Y.: Improvements on “Multiparty quantum key agreement with single particles”. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Yin, X.R., Ma, W.P., Liu, W.Y.: Three-party quantum key agreement with two-photon entanglement. Int. J. Theor. Phys. 52, 3915–3921 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Huang, W., Xia, Q.S., Li, Y.B., Sun, Y.: Quantum key agreement against collective decoherence. Int. J. Theor. Phys. (2014). doi:10.1007/s10773-014-2087-8

  29. Huang, W., Wen, Q.Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651–1657 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  30. Renes, J.M., Renner, R., Sutter, D.: Efficient one-way secret-key agreement and private channel coding via polarization. ASIACRYPT 2013 Part I, LNCS 8269, pp. 194–213 (2013)

  31. Huang, W., Wen, Q.Y., Liu, B., Gao, F., Sun, Y.: Quantum key agreement with EPR pairs and single-particle measurements. Quantum Inf. Process. 13, 649–663 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910 (2001)

    Article  ADS  Google Scholar 

  33. Shukla, C., Kothari, V., Banerjee, A., Pathak, A.: On the group-theoretic structure of a class of quantum dialogue protocols. Phys. Lett. A 377, 518–527 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  34. Gao, F., Wen, Q.Y., Zhu, F.C.: Comment on: “Quantum exam” Phys. Lett. A 350, 174 (2006). Phys. Lett. A 360, 748–750 (2007)

  35. Gao, F., Guo, F.Z., Wen, Q.Y., Zhu, F.C.: Comment on “Experimental demonstration of a quantum protocol for byzantine agreement and liar detection”. Phys. Rev. Lett. 101, 208901 (2008)

    Article  ADS  Google Scholar 

  36. Song, T.T., Zhang, J., Gao, F., Wen, Q.Y., Zhu, F.C.: Participant attack on quantum secret sharing based on entanglement swapping. Chin. Phys. B. 18, 1333 (2009)

    Article  ADS  Google Scholar 

  37. Guo, F.Z., Qin, S.J., Gao, F., et al.: Participant attack on a kind of MQSS schemes based on entanglement swapping. Eur. Phys. J. D. 56, 445 (2010)

    Article  ADS  Google Scholar 

  38. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Modern Phys. 74(1), 145–195 (2002)

    Article  ADS  Google Scholar 

  39. Jahanshahi, S., Bahrampour, A., Zandi, M.H.: Three-particle deterministic secure and high bit-rate direct quantum communication protocol. Quantum Inf. Process. 12, 2441–2451 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with potential 100% qubit efficiency. IET Proc. Inf. Secur. 1, 43–45 (2007)

    Article  Google Scholar 

  41. Shih, H.C., Lee, K.C., Hwang, T.: New efficient three-party quantum key distribution protocols. IEEE J. Sel. Top. Quantum Electron. 15(6), 1602–1609 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 61072140 and 61373171, the 111 Project under Grant No. B08038, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20100203110003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Su Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, DS., Ma, WP. & Wang, Ll. Two-party quantum key agreement with four-qubit cluster states. Quantum Inf Process 13, 2313–2324 (2014). https://doi.org/10.1007/s11128-014-0785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0785-z

Keywords

Navigation