Skip to main content
Log in

Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present an efficient protocol to concentrate arbitrary less-hyperentangled multi-photon W states to the maximally hyperentangled multi-photon W state with parameter-splitting method and linear optics elements. Compared with previous entanglement concentration works, the present protocol does not need two copies of partially entangled states or the ancillary single photon. Moreover, we discuss the feasibility of the setups of the protocol, concluding that the present protocol is feasible with the current technology. Thus, the protocol may be more meaningful in practical quantum information applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Gordon, G., Rigolin, G.: Generalized teleportation protocol. Phys. Rev. A 73, 042309 (2006)

    Article  ADS  Google Scholar 

  4. Xia, Y., Fu, C.B., Zhang, S., Yeon, K.H., Um, C.I.: Probabilistic teleportation of an arbitrary three-particle state via a partial entangled four- particle state and a three-particle GHZ state. J. Korean Phys. Soc. 46, 388 (2005)

    Google Scholar 

  5. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)

    Article  ADS  Google Scholar 

  6. Xia, Y., Song, J., Lu, P.M., Song, H.S.: Effective quantum teleportation of an atomic state between two cavities with the cross-Kerr nonlinearity by interference of polarized photons. J. Appl. Phys. 109, 103111 (2011)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: Communication via one and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Xia, Y., Song, H.S.: Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdensecoding. Phys. Lett. A 364, 117 (2007)

    Article  ADS  MATH  Google Scholar 

  9. Zhu, A.D., Xia, Y., Fan, Q.B., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  10. Chen, Y.H., Xia, Y., Chen, Q.Q., Song, J.: Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A 89, 033856 (2014)

    Article  ADS  Google Scholar 

  11. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89, 022326 (2014)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A 72, 044301 (2005)

    Article  ADS  Google Scholar 

  13. Xia, Y., Song, J., Song, H.S.: Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors. Appl. Phys. Lett. 92, 021127 (2008)

    Article  ADS  Google Scholar 

  14. Kang, Y.H., Xia, Y., Lu, P.M.: Effective scheme for generation of N-dimension atomic Greenberger-Horne-Zeilinger states. Quantum Inf. Process. 13, 1255–1265 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Fan, L.L., Xia, Y., Song, J.: Complete hyperentanglement-assisted multi-photon Greenberger-Horne-Zeilinger states analysis with cross-Kerr nonlinearity. Opt. Commun. 317, 102–106 (2014)

    Article  ADS  Google Scholar 

  16. Song, J., Sun, X.D., Mu, Q.X., Zhang, L.L., Xia, Y., Song, H.S.: Direct conversion of a four-atom W state to a Greenberger-Horne-Zeilinger state via a dissipative process. Phys. Rev. A 88, 024305 (2013)

    Article  ADS  Google Scholar 

  17. Chen, Y.H., Xia, Y., Song, J.: Effective protocol for generation of multiple atoms entangled states in two coupled cavities via adiabatic passage. Quantum Inf. Process. 12, 3771 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Lu, M., Xia, Y., Song, J., An, N.B.: Generation of N-atom W-class states in spatially separated cavities. J. Opt. Soc. Am. B 30, 2142 (2013)

    Article  ADS  Google Scholar 

  19. Hao, S.Y., Xia, Y., Song, J., Song, H.S.: One-step generation of multiatom Greenberger-Horne-Zeilinger states in separate cavitiesvia adiabatic passage. J. Opt. Soc. Am. B 30, 468 (2013)

    Article  ADS  Google Scholar 

  20. Xia, Y., Lu, M., Song, J., Lu, P.M., Song, H.S.: Effective protocol for preparation of four-photon polarization-entangled decoherence-free states with cross-Kerr nonlinearity. J. Opt. Soc. Am. B 30, 421 (2013)

    Article  ADS  Google Scholar 

  21. Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996)

    Article  ADS  Google Scholar 

  22. Deutsch, D., Ekert, A., Jozsa, R., Macchiavello, C., Popescu, S., Sanpera, A.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  23. Xia, Y., Fan, L.L., Hao, S.Y., He, J., Song, J., Wei, R.S., Huang, L.Q.: Efficient nonlocal entangled state distribution over the collective-noise channel. Quantum Inf. Process. 12, 3553–3568 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Lu, P.M., Xia, Y., Song, J.: Efficient W polarization state distribution over an arbitrary collective-noise channel with cross-Kerr nonlinearity. Opt. Commun. 284, 5866–5870 (2011)

    Article  ADS  Google Scholar 

  25. Pan, J.W., Simon, C., Zellinger, A.: Entanglement purification for quantum communication. Nature (London) 410, 1067–1070 (2001)

    Article  ADS  Google Scholar 

  26. Simon, C., Pan, J.W.: Polarization entanglement purification using spatial entanglement. Phys. Rev. Lett. 89, 257901 (2002)

    Article  ADS  Google Scholar 

  27. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 77, 042308 (2008)

    Article  ADS  Google Scholar 

  28. Sheng, Y.B., Deng, F.G.: Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  29. Wang, C., Zhang, Y., Jin, G.S.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 84, 032307 (2011)

    Article  ADS  Google Scholar 

  30. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  ADS  Google Scholar 

  31. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194 (1999)

    Article  ADS  Google Scholar 

  32. Zhao, Z., Pan, J.W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  33. Yamamoto, T., Koashi, M., Imoto, N.: Concentration and purification scheme for two partially entangled photon pairs. Phys. Rev. A 64, 012304 (2001)

    Article  ADS  Google Scholar 

  34. Zhao, Z., Yang, T., Chen, Y.A., Zhang, A.N., Pan, J.W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    Article  ADS  Google Scholar 

  35. Yamamoto, T., Koashi, M., Ozdemir, S.K., Imoto, N.: Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature (London) 421, 343–346 (2003)

    Article  ADS  Google Scholar 

  36. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys. Rev. A 77, 062325 (2008)

    Article  ADS  Google Scholar 

  37. Sheng, Y.B., Deng, F.G., Zhou, H.Y.: Single-photon entanglement concentration for long-distance quantum communication. Quantum Inf. Comput. 10, 272–281 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Sheng, Y.B., Zhou, L., Zhao, S.M., Zheng, B.Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  39. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  40. Ren, B.C., Du, F.F., Deng, F.G.: Hyperentanglement concentration for two-photon four-qubit systems with linear optics. Phys. Rev. A 88, 012302 (2013)

    Article  ADS  Google Scholar 

  41. Wang, H.F., Zhang, S., Yeon, H.: Linear optical scheme for entanglement concentration of two partially entangled three-photon W states. Eur. Phys. J. D 56, 271–275 (2010)

    Article  ADS  Google Scholar 

  42. Du, F.F., Li, T., Ren, B.C., Wei, H.R., Deng, F.G.: Single-photon-assisted entanglement concentration of a multiphoton system in a partially entangled W state with weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B 29, 1399–1405 (2012)

    Article  ADS  Google Scholar 

  43. Gu, B.: Single-photon-assisted entanglement concentration of partially entangled multiphoton W states with linear optics. J. Opt. Soc. Am. B 29, 1685–1689 (2012)

    Article  ADS  Google Scholar 

  44. Sheng, Y.B., Zhou, L., Zhao, M.: Efficient two-step entanglement concentration for arbitrary W state. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  45. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary single-photon multimode W state. J. Opt. Soc. Am. B 30, 71–78 (2013)

    Article  ADS  Google Scholar 

  46. Kwiat, P.G., Weinfurter, H.: Embedded Bell-state analysis. Phys. Rev. A 58, R2623 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  47. Walborn, S.P., Padua, S., Monken, C.H.: Hyperentanglement-assisted Bell-state analysis. Phys. Rev. A 68, 042313 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  48. Schuck, C., Huber, G., Kurtsiefer, C., Weinfurter, H.: Complete deterministic linear optics Bell state analysis. Phys. Rev. Lett. 96, 190501 (2006)

    Article  ADS  Google Scholar 

  49. Barbieri, M., Vallone, G., Mataloni, P., De Martini, F.: Complete and deterministic discrimination of polarization Bell states assisted by momentum entanglement. Phys. Rev. A 75, 042317 (2007)

    Article  ADS  Google Scholar 

  50. Barreiro, J.T., Langford, N.K., Peters, N.A., Kwiat, P.G.: Generation of hyperentangled photon pairs. Phys. Rev. Lett. 95, 260501 (2005)

    Article  ADS  Google Scholar 

  51. Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008)

    Article  Google Scholar 

  52. Graham, T.M., Barreiro, J.T., Mohseni, M., Kwiat, P.G.: Hyperentanglement-enabled direct characterization of quantum dynamics. Phys. Rev. Lett. 110, 060404 (2013)

    Article  ADS  Google Scholar 

  53. Reck, M., Zeilinger, A., Bernstein, H.J., Bertani, P.: Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58 (1994)

    Article  ADS  Google Scholar 

  54. Xiong, W., Ye, L.: Optimal real state quantum cloning machine in cavity quantum electrodynamics. J. Opt. Soc. Am. B 28, 2260–2264 (2011)

    Article  ADS  Google Scholar 

  55. Zhou, L., Sheng, Y.B., Cheng, W.W., Gong, L.Y., Zhao, S.M.: Efficient entanglement concentration for arbitrary less-entangled NOON states. Quantum Inf. Process. 12, 1307–1320 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants No. 11105030 and No. 11374054, and the Major State Basic Research Development Program of China under Grant No. 2012CB921601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, LL., Xia, Y. & Song, J. Efficient entanglement concentration for arbitrary less-hyperentanglement multi-photon W states with linear optics. Quantum Inf Process 13, 1967–1978 (2014). https://doi.org/10.1007/s11128-014-0789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0789-8

Keywords

Navigation